Physical layer security in cellular networks: a stochastic geometry approach
Date
Authors
Wang, He
Reed, Mark C
Zhou, Xiangyun
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Abstract
This paper studies the information-theoretic secrecy performance in large-scale cellular networks based on a stochastic geometry framework. The locations of both base stations and mobile users are modeled as independent two-dimensional Poisson point processes. We consider two important features of cellular networks, namely, information exchange between base stations and cell association, to characterize their impact on the achievable secrecy rate of an arbitrary downlink transmission with a certain portion of the mobile users acting as potential eavesdroppers. In particular, tractable results are presented under diverse assumptions on the availability of eavesdroppers' location information at the serving base station, which captures the benefit from the exchange of the location information between base stations.
Description
Keywords
physical layer security, cellular networks, stochastic geometry, location information exchange, cell association
Citation
Collections
Source
IEEE Transactions on Wireless Communications 12.6 (2013): 2776 - 2787
Type
Journal article
Book Title
Entity type
Access Statement
Open Access
License Rights
Restricted until
Downloads
File
Description