ANU Open Research Repository has been upgraded. We are still working on a few minor issues, which may result in short outages throughout the day. Please get in touch with if you experience any issues.

In situ study of aggregate sizes formed in chalcopyrite-quartz mixture using temperature-responsive polymers




Sung Ng, Wei
Connal, Luke
Forbes, Elizaveta
Mohanarangam, Krishna
Franks, G. V.

Journal Title

Journal ISSN

Volume Title


Elsevier BV


An interesting property of temperature-responsive polymers, such as poly(N-isopropylacrylamide) (PNIPAM), is the ability to behave as flocculants above a lower critical solution temperature (LCST). This study examines the aggregation of a chalcopyrite-quartz mixture using a sulfide-selective temperature-responsive polymer, P(NIPAM-co-ethyl xanthate methacrylate (EXMA)) in a continuously-sheared suspension, relative to polyacrylamide (PAM). The investigation was carried out in situ using imaging and Focused Beam Reflectance Measurement techniques to obtain real-time chord length distributions. While particle aggregates were observed in the presence of PNIPAM only upon heating above the LCST, P(NIPAM-co-EXMA) induced particle aggregation below the LCST, due to the attraction between the xanthate moiety and the sulfide surfaces. The largest aggregates were observed with P(NIPAM-co-EXMA) (1.5 MDa), followed by PNIPAM, PAM, and P(NIPAM-co-EXMA) (115 kDa). Particle aggregates formed with PAM did not exhibit further breakage under increasing shear to 1100 s^−1, while large-scale fragmentation was observed with the PNIPAM-based flocculants. Unlike PNIPAM, addition of P(NIPAM-co-EXMA) to suspension above the LCST was able to yield particle aggregation, attributed to the formation of charge-stabilised micelles. The influence of the shear rate on the size of the aggregates formed with P(NIPAM-co-EXMA) is unaffected by the polymer addition and measurement temperature below or above the LCST.



Temperature-responsive polymers, Particle aggregation, Aggregate size, Sulfide minerals, Shear breakage



Advanced Powder Technology


Journal article

Book Title

Entity type

Access Statement

License Rights



Restricted until