Combining RCC-8 with qualitative direction calculi: Algorithms and complexity

Date

2009

Authors

Liu, Weiming
Li, Sanjiang
Renz, Jochen

Journal Title

Journal ISSN

Volume Title

Publisher

AAAI Press

Abstract

Increasing the expressiveness of qualitative spatial calculi is an essential step towards meeting the requirements of applications. This can be achieved by combining existing calculi in a way that we can express spatial information using relations from both calculi. The great challenge is to develop reasoning algorithms that are correct and complete when reasoning over the combined information. Previous work has mainly studied cases where the interaction between the combined calculi was small, or where one of the two calculiwas very simple. In this paper we tackle the important combination of topological and directional information for extended spatial objects. We combine some of the best known calculi in qualitative spatial reasoning (QSR), the RCC8 algebra for representing topological information, and the Rectangle Algebra (RA) and the Cardinal Direction Calculus (CDC) for directional information. Although CDC is more expressive than RA, reasoning with CDC is of the same order as reasoning with RA. We show that reasoning with basic RCC8 and basic RA relations is in P, but reasoning with basic RCC8 and basic CDC relations is NP-Complete.

Description

Keywords

Keywords: Algorithms and complexity; Cardinal direction; Combined informations; Directional information; NP Complete; Qualitative spatial reasoning; Reasoning algorithms; Rectangle algebra; Spatial calculi; Spatial informations; Spatial objects; Topological informa

Citation

Source

Proceedings of International Joint Conference on Artificial Intelligence (IJCAI 2009)

Type

Conference paper

Book Title

Entity type

Access Statement

License Rights

DOI

Restricted until

2037-12-31