Animal NLRs provide structural insights into plant NLR function

dc.contributor.authorBentham, Adam
dc.contributor.authorBurdett, Hayden
dc.contributor.authorAnderson, Peter A
dc.contributor.authorWilliams, Simon
dc.contributor.authorKobe, Bostjan
dc.date.accessioned2021-05-09T23:54:11Z
dc.date.issued2017
dc.date.updated2020-11-23T10:11:26Z
dc.description.abstractBackground The plant immune system employs intracellular NLRs (nucleotide binding [NB], leucine-rich repeat [LRR]/nucleotide-binding oligomerization domain [NOD]-like receptors) to detect effector proteins secreted into the plant cell by potential pathogens. Activated plant NLRs trigger a range of immune responses, collectively known as the hypersensitive response (HR), which culminates in death of the infected cell. Plant NLRs show structural and functional resemblance to animal NLRs involved in inflammatory and innate immune responses. Therefore, knowledge of the activation and regulation of animal NLRs can help us understand the mechanism of action of plant NLRs, and vice versa. Scope This review provides an overview of the innate immune pathways in plants and animals, focusing on the available structural and biochemical information available for both plant and animal NLRs. We highlight the gap in knowledge between the animal and plant systems, in particular the lack of structural information for plant NLRs, with crystal structures only available for the N-terminal domains of plant NLRs and an integrated decoy domain, in contrast to the more complete structures available for animal NLRs. We assess the similarities and differences between plant and animal NLRs, and use the structural information on the animal NLR pair NAIP/NLRC4 to derive a plausible model for plant NLR activation. Conclusions Signalling by cooperative assembly formation (SCAF) appears to operate in most innate immunity pathways, including plant and animal NLRs. Our proposed model of plant NLR activation includes three key steps: (1) initially, the NLR exists in an inactive auto-inhibited state; (2) a combination of binding by activating elicitor and ATP leads to a structural rearrangement of the NLR; and (3) signalling occurs through cooperative assembly of the resistosome. Further studies, structural and biochemical in particular, will be required to provide additional evidence for the different features of this model and shed light on the many existing variations, e.g. helper NLRs and NLRs containing integrated decoys.en_AU
dc.description.sponsorshipThe research in the authors’ laboratories was supported by the National Health and Medical Research Council (NHMRC grants APP1003326, APP1107804 and APP1071659 to B.K.) and the Australian Research Council (ARC Discovery Project DP160102244 to B.K.). B.K. is an NHMRC Principal Research Fellow (APP1003325 and APP1110971). S.J.W. is an ARC DECRA Fellow (DE160100893).en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn0305-7364en_AU
dc.identifier.urihttp://hdl.handle.net/1885/232548
dc.language.isoen_AUen_AU
dc.publisherAcademic Pressen_AU
dc.relationhttp://purl.org/au-research/grants/nhmrc/1003326en_AU
dc.relationhttp://purl.org/au-research/grants/nhmrc/1107804en_AU
dc.relationhttp://purl.org/au-research/grants/nhmrc/1071659en_AU
dc.relationhttp://purl.org/au-research/grants/arc/DP160102244en_AU
dc.relationhttp://purl.org/au-research/grants/nhmrc/1003325en_AU
dc.relationhttp://purl.org/au-research/grants/nhmrc/1110971en_AU
dc.relationhttp://purl.org/au-research/grants/arc/DE160100893en_AU
dc.rights© The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Companyen_AU
dc.sourceAnnals of Botanyen_AU
dc.subjectAvirulence proteinen_AU
dc.subjectcrystal structureen_AU
dc.subjectcryo-electron microscopyen_AU
dc.subjecteffector-triggered immunity (ETI)en_AU
dc.subjectnucleotide binding (NB)en_AU
dc.subjectleucine-rich repeat (LRR)/nucleotide-binding oligomerization domain (NOD)-like receptor (NLR)en_AU
dc.subjectplant pathogen effector proteinen_AU
dc.subjectresistance proteinen_AU
dc.subjectthree-dimensional structureen_AU
dc.titleAnimal NLRs provide structural insights into plant NLR functionen_AU
dc.typeJournal articleen_AU
local.bibliographicCitation.issue5en_AU
local.bibliographicCitation.lastpage702en_AU
local.bibliographicCitation.startpage689en_AU
local.contributor.affiliationBentham, Adam, University of Queenslanden_AU
local.contributor.affiliationBurdett, Hayden , Flinders Universityen_AU
local.contributor.affiliationAnderson , Peter A , Flinders Universityen_AU
local.contributor.affiliationWilliams, Simon, College of Science, ANUen_AU
local.contributor.affiliationKobe, Bostjan, University of Queenslanden_AU
local.contributor.authoremailu1022692@anu.edu.auen_AU
local.contributor.authoruidWilliams, Simon, u1022692en_AU
local.description.embargo2099-12-31
local.description.notesImported from ARIESen_AU
local.identifier.absfor060702 - Plant Cell and Molecular Biologyen_AU
local.identifier.absfor060112 - Structural Biology (incl. Macromolecular Modelling)en_AU
local.identifier.absseo970106 - Expanding Knowledge in the Biological Sciencesen_AU
local.identifier.ariespublicationu4956746xPUB629en_AU
local.identifier.citationvolume119en_AU
local.identifier.doi10.1093/aob/mcw171en_AU
local.identifier.scopusID2-s2.0-85018948407
local.identifier.thomsonID000400982600011
local.identifier.uidSubmittedByu4956746en_AU
local.publisher.urlhttp://aob.oxfordjournals.org/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
01_Bentham_Animal_NLRs_provide_structural_2017.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format