Measurement of Interaction Forces between Lignin and Cellulose as a Function of Aqueous Electrolyte Solution Conditions
Date
Authors
Notley, Shannon
Norgren, Magnus
Journal Title
Journal ISSN
Volume Title
Publisher
American Chemical Society
Abstract
The interaction between a lignin film and a cellulose sphere has been measured using the colloidal probe force technique as a function of aqueous electrolyte solution conditions. The lignin film was first studied for its roughness and stability using atomic force microscopy imaging and quartz crystal microbalance measurements, respectively. The film was found to be smooth and stable in the pH range of 3.5-9 and in ionic strengths up to and including 0.01 M. This range of ionic strength and pH was hence used to measure the surface force profiles between lignin and cellulose. Under these solution conditions, the measured forces behaved according to DLVO theory. The force-distance curves could be fitted between the limits of constant charge and constant potential, and the surface potential of the lignin films was determined as a function of pH. At a pH greater than 9.5, a short range steric repulsion was observed, indicating that the film was swelling to a large extent but did not dissolve. Thus, lignin films prepared in this manner are suitable for a range of surface force studies.
Description
Citation
Collections
Source
Langmuir
Type
Book Title
Entity type
Access Statement
License Rights
Restricted until
2037-12-31
Downloads
File
Description