Proof of the fundamental gap conjecture
dc.contributor.author | Andrews, Ben | |
dc.contributor.author | Clutterbuck, Julie | |
dc.date.accessioned | 2015-12-22T02:31:23Z | |
dc.date.available | 2015-12-22T02:31:23Z | |
dc.date.issued | 2011-03-16 | |
dc.date.updated | 2016-02-24T08:16:21Z | |
dc.description.abstract | We prove the Fundamental Gap Conjecture, which states that the difference between the first two Dirichlet eigenvalues (the spectral gap) of a Schrödinger operator with convex potential and Dirichlet boundary data on a convex domain is bounded below by the spectral gap on an interval of the same diameter with zero potential. More generally, for an arbitrary smooth potential in higher dimensions, our proof gives both a sharp lower bound for the spectral gap and a sharp modulus of concavity for the logarithm of the first eigenfunction, in terms of the diameter of the domain and a modulus of convexity for the potential. | |
dc.identifier.issn | 0894-0347 | en_AU |
dc.identifier.uri | http://hdl.handle.net/1885/95165 | |
dc.publisher | American Mathematical Society | |
dc.rights | © 2011 American Mathematical Society | |
dc.source | Journal of the American Mathematical Society | |
dc.subject | Keywords: Eigenvalue estimate; Parabolic equation; Spectral gap | |
dc.title | Proof of the fundamental gap conjecture | |
dc.type | Journal article | |
local.bibliographicCitation.issue | 3 | en_AU |
local.bibliographicCitation.lastpage | 916 | en_AU |
local.bibliographicCitation.startpage | 899 | en_AU |
local.contributor.affiliation | Andrews, Benjamin, College of Physical and Mathematical Sciences, CPMS Mathematical Sciences Institute, Centre for Mathematics and Its Applications, The Australian National University | en_AU |
local.contributor.affiliation | Clutterbuck, Julie, College of Physical and Mathematical Sciences, CPMS Mathematical Sciences Institute, Centre for Mathematics and Its Applications, The Australian National University | en_AU |
local.contributor.authoremail | Ben.Andrews@anu.edu.au | en_AU |
local.contributor.authoruid | u8610103 | en_AU |
local.description.notes | Imported from ARIES | en_AU |
local.identifier.absfor | 010102 | en_AU |
local.identifier.absfor | 010110 | en_AU |
local.identifier.absseo | 970101 | en_AU |
local.identifier.ariespublication | f2965xPUB1706 | en_AU |
local.identifier.citationvolume | 24 | en_AU |
local.identifier.doi | 10.1090/S0894-0347-2011-00699-1 | en_AU |
local.identifier.scopusID | 2-s2.0-79953753982 | |
local.identifier.uidSubmittedBy | u3488905 | en_AU |
local.publisher.url | https://www.aip.org/ | en_AU |
local.type.status | Published Version | en_AU |
Downloads
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 884 B
- Format:
- Item-specific license agreed upon to submission
- Description: