Proof of the fundamental gap conjecture

dc.contributor.authorAndrews, Ben
dc.contributor.authorClutterbuck, Julie
dc.date.accessioned2015-12-22T02:31:23Z
dc.date.available2015-12-22T02:31:23Z
dc.date.issued2011-03-16
dc.date.updated2016-02-24T08:16:21Z
dc.description.abstractWe prove the Fundamental Gap Conjecture, which states that the difference between the first two Dirichlet eigenvalues (the spectral gap) of a Schrödinger operator with convex potential and Dirichlet boundary data on a convex domain is bounded below by the spectral gap on an interval of the same diameter with zero potential. More generally, for an arbitrary smooth potential in higher dimensions, our proof gives both a sharp lower bound for the spectral gap and a sharp modulus of concavity for the logarithm of the first eigenfunction, in terms of the diameter of the domain and a modulus of convexity for the potential.
dc.identifier.issn0894-0347en_AU
dc.identifier.urihttp://hdl.handle.net/1885/95165
dc.publisherAmerican Mathematical Society
dc.rights© 2011 American Mathematical Society
dc.sourceJournal of the American Mathematical Society
dc.subjectKeywords: Eigenvalue estimate; Parabolic equation; Spectral gap
dc.titleProof of the fundamental gap conjecture
dc.typeJournal article
local.bibliographicCitation.issue3en_AU
local.bibliographicCitation.lastpage916en_AU
local.bibliographicCitation.startpage899en_AU
local.contributor.affiliationAndrews, Benjamin, College of Physical and Mathematical Sciences, CPMS Mathematical Sciences Institute, Centre for Mathematics and Its Applications, The Australian National Universityen_AU
local.contributor.affiliationClutterbuck, Julie, College of Physical and Mathematical Sciences, CPMS Mathematical Sciences Institute, Centre for Mathematics and Its Applications, The Australian National Universityen_AU
local.contributor.authoremailBen.Andrews@anu.edu.auen_AU
local.contributor.authoruidu8610103en_AU
local.description.notesImported from ARIESen_AU
local.identifier.absfor010102en_AU
local.identifier.absfor010110en_AU
local.identifier.absseo970101en_AU
local.identifier.ariespublicationf2965xPUB1706en_AU
local.identifier.citationvolume24en_AU
local.identifier.doi10.1090/S0894-0347-2011-00699-1en_AU
local.identifier.scopusID2-s2.0-79953753982
local.identifier.uidSubmittedByu3488905en_AU
local.publisher.urlhttps://www.aip.org/en_AU
local.type.statusPublished Versionen_AU

Downloads

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
884 B
Format:
Item-specific license agreed upon to submission
Description: