Effect of oxygen concentration on nanoindentation-induced phase transformations in ion-implanted amorphous silicon

Authors

Ruffell, S.
Vedi, J.
Bradby, J. E.
Williams, J. S.
Haberl, Bianca

Journal Title

Journal ISSN

Volume Title

Publisher

American Institute of Physics (AIP)

Abstract

The effect of the local oxygen concentration in ion-implanted amorphous Si (a-Si) on nanoindentation-inducedphase transformations has been investigated. Implantation of oxygen into the a-Sifilms has been used to controllably introduce an approximately constant concentration of oxygen, ranging from ∼10¹⁸ to ∼10²¹ cm⁻³, over the depth range of the phase transformed zones. Nanoindentation was performed under conditions that ensure a phase transformed zone composed completely of Si-III/XII in the nominally oxygen-free a-Si. The effect of the local oxygen concentration has been investigated by analysis of the unloading curves, Raman microspectroscopy, and cross-sectional transmission electron microscopy (XTEM). The formation of Si-III/XII is suppressed with increasing oxygen concentration, favoring a greater volume of a-Si within the zones. The Raman microspectroscopy and XTEM verify that the volume of Si-III/XII decreases with increasing O concentration. With the smaller volumes of Si-III/XII, the pop-out normally observed on load versus penetration depth curves during unloading decreases in magnitude, becoming more kinklike and is barely discernable at high concentrations of oxygen. The probability of forming any high pressure phases is reduced from 1 to ∼0.1 for a concentration of 10²¹ cm⁻³. We suggest that the bonding of O with Si reduces the formation of Si-III/XII during unloading through a similar mechanism to that of oxygen-retarded solid phase crystallization of a-Si.

Description

Citation

Source

Journal of Applied Physics

Book Title

Entity type

Access Statement

License Rights

Restricted until