The Kalman Decomposition for Linear Quantum Systems
dc.contributor.author | Zhang, Guofeng | |
dc.contributor.author | Grivopoulos, Symeon | |
dc.contributor.author | Petersen, Ian | |
dc.contributor.author | Gough, J. E. | |
dc.date.accessioned | 2020-01-23T01:12:43Z | |
dc.date.issued | 2017-06-07 | |
dc.date.updated | 2019-11-25T07:23:17Z | |
dc.description.abstract | This paper studies the Kalman decomposition for linear quantum systems. Contrary to the classical case, the coordinate transformation used for the decomposition must belong to a specific class of transformations as a consequence of the laws of quantum mechanics. We propose a construction method for such transformations that put the system in a Kalman canonical form. Furthermore, we uncover an interesting structure for the obtained decomposition. In the case of passive systems, it is shown that there exist only controllable/observable and uncontrollable/unobservable subsystems. In the general case, controllable/unobservable and uncontrollable/observable subsystems may also be present, but their respective system variables must be conjugate variables of each other. This decomposition naturally exposes decoherence-free modes, quantum-nondemolition modes, quantum-mechanics-free subsystems, and back-action evasion measurements in the quantum system, which are useful resources for quantum information processing, and quantum measurements. The theory developed is applied to physical examples. | en_AU |
dc.description.sponsorship | This work was supported in part by the National Natural Science Foundation of China under Grant 61374057, in part by Hong Kong Research Grants Council under Grant 531213 and Grant 15206915, in part by the Australian Research Council under Grant FL110100020, and in part by the Air Force Office of Scientific Research (AFOSR) under Agreement FA2386-16-1-4065. | en_AU |
dc.format.mimetype | application/pdf | en_AU |
dc.identifier.issn | 0018-9286 | en_AU |
dc.identifier.uri | http://hdl.handle.net/1885/199370 | |
dc.language.iso | en_AU | en_AU |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE Inc) | en_AU |
dc.relation | http://purl.org/au-research/grants/arc/FL110100020 | en_AU |
dc.rights | © 2017 IEEE | en_AU |
dc.source | IEEE Transactions on Automatic Control | en_AU |
dc.subject | Controllability | en_AU |
dc.subject | kalman decomposition | en_AU |
dc.subject | linear quantum systems | en_AU |
dc.subject | observability | en_AU |
dc.title | The Kalman Decomposition for Linear Quantum Systems | en_AU |
dc.type | Journal article | en_AU |
dcterms.dateAccepted | 2017-05-31 | |
local.bibliographicCitation.issue | 2 | en_AU |
local.bibliographicCitation.lastpage | 346 | en_AU |
local.bibliographicCitation.startpage | 331 | en_AU |
local.contributor.affiliation | Zhang, Guofeng, Hong Kong Polytechnic University | en_AU |
local.contributor.affiliation | Grivopoulos, Symeon, University of New South Wales, Canberra | en_AU |
local.contributor.affiliation | Petersen, Ian, College of Engineering and Computer Science, ANU | en_AU |
local.contributor.affiliation | Gough, J. E., Aberystwyth University | en_AU |
local.contributor.authoremail | u4036493@anu.edu.au | en_AU |
local.contributor.authoruid | Petersen, Ian, u4036493 | en_AU |
local.description.embargo | 2037-12-31 | |
local.description.notes | Imported from ARIES | en_AU |
local.identifier.absfor | 090602 - Control Systems, Robotics and Automation | en_AU |
local.identifier.absseo | 970109 - Expanding Knowledge in Engineering | en_AU |
local.identifier.ariespublication | a383154xPUB9366 | en_AU |
local.identifier.citationvolume | 63 | en_AU |
local.identifier.doi | 10.1109/TAC.2017.2713343 | en_AU |
local.identifier.scopusID | 2-s2.0-85041444733 | |
local.identifier.uidSubmittedBy | a383154 | en_AU |
local.publisher.url | https://ieeexplore.ieee.org | en_AU |
local.type.status | Published Version | en_AU |
Downloads
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 01_Zhang_The_Kalman_Decomposition_for_2018.pdf
- Size:
- 619.97 KB
- Format:
- Adobe Portable Document Format