Canny-VO: Visual Odometry with RGB-D Cameras Based on Geometric 3-D-2-D Edge Alignment

dc.contributor.authorZhou, Yi
dc.contributor.authorLi, Hongdong
dc.contributor.authorKneip, Laurent
dc.date.accessioned2020-03-06T02:55:23Z
dc.date.issued2019
dc.date.updated2019-11-25T07:39:39Z
dc.description.abstractThis paper reviews the classical problem of free-form curve registration and applies it to an efficient RGB-D visual odometry system called Canny-VO, as it efficiently tracks all Canny edge features extracted from the images. Two replacements for the distance transformation commonly used in edge registration are proposed: approximate nearest neighbor fields and oriented nearest neighbor fields. 3-D–2-D edge alignment benefits from these alternative formulations in terms of both efficiency and accuracy. It removes the need for the more computationally demanding paradigms of data-to-model registration, bilinear interpolation, and subgradient computation. To ensure robustness of the system in the presence of outliers and sensor noise, the registration is formulated as a maximum a posteriori problem and the resulting weighted least-squares objective is solved by the iteratively reweighted least-squares method. A variety of robust weight functions are investigated and the optimal choice is made based on the statistics of the residual errors. Efficiency is furthermore boosted by an adaptively sampled definition of the nearest neighbor fields. Extensive evaluations on public SLAM benchmark sequences demonstrate state-of-the-art performance and an advantage over classical Euclidean distance fields.en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn1552-3098en_AU
dc.identifier.urihttp://hdl.handle.net/1885/202071
dc.language.isoen_AUen_AU
dc.publisherInstitute of Electrical and Electronics Engineersen_AU
dc.rights© 2018 IEEEen_AU
dc.sourceIEEE Transactions on Roboticsen_AU
dc.titleCanny-VO: Visual Odometry with RGB-D Cameras Based on Geometric 3-D-2-D Edge Alignmenten_AU
dc.typeJournal articleen_AU
local.bibliographicCitation.issue1en_AU
local.bibliographicCitation.lastpage199en_AU
local.bibliographicCitation.startpage184en_AU
local.contributor.affiliationZhou, Yi, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationLi, Hongdong, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationKneip, Laurent, Shanghai Tech Universityen_AU
local.contributor.authoremailrepository.admin@anu.edu.auen_AU
local.contributor.authoruidZhou, Yi, u5535909en_AU
local.contributor.authoruidLi, Hongdong, u4056952en_AU
local.description.embargo2037-12-31
local.description.notesImported from ARIESen_AU
local.identifier.absfor080104 - Computer Visionen_AU
local.identifier.absfor080101 - Adaptive Agents and Intelligent Roboticsen_AU
local.identifier.absfor080106 - Image Processingen_AU
local.identifier.absseo890401 - Animation and Computer Generated Imagery Servicesen_AU
local.identifier.absseo890205 - Information Processing Services (incl. Data Entry and Capture)en_AU
local.identifier.ariespublicationu3102795xPUB386en_AU
local.identifier.citationvolume35en_AU
local.identifier.doi10.1109/TRO.2018.2875382en_AU
local.identifier.scopusID2-s2.0-85055674712
local.identifier.uidSubmittedByu3102795en_AU
local.publisher.urlhttps://www.ieee.org/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
01_Zhou_Canny-VO%3A_Visual_Odometry_with_2019.pdf
Size:
4.07 MB
Format:
Adobe Portable Document Format