Direct fabrication of silicone lenses with 3D printed parts

Date

Authors

Kamal, Tahseen
Watkins, Rachel
Cen, Zi
Lee, Woei Ming (Steve)

Journal Title

Journal ISSN

Volume Title

Publisher

SPIE - The International Society for Optical Engineering

Abstract

The traditional process of making glass lenses requires grinding and polishing of the material which is a tedious and sensitive process. Existing polymer lens making techniques, such as high temperature reflow techniques, have been significantly simple lens making processes which cater well to customer industry. Recently, the use of UV-curing liquid lens has ushered in customized lens making (Printed Optics), but contains undesirable yellowing effects. Polydimethylsiloxane (PDMS) is a transparent polymer curable at low temperature (<100°C) provides an alternative to lens making. In this work, we showed that PDMS lenses are fabricated using single silicone droplets which are formed in a guided and controlled passive manner using 3D printed tools. These silicone lenses have attributes such as smoothness of curvature, resilience to temperature change, low optical aberrations, high transparency (>95%) and minimal aging (yellowing). Moreover, these lenses have a range of focal lengths (3.5 mm to 14.5 mm as well as magnifications (up to 160X). In addition, we created smartphone attachment to turn smart device (tablet or smartphone) into a low-powered microscope. In future we plan to extend this method to produce microlens array.

Description

Keywords

Citation

Source

Proceedings of SPIE, Conference Volume 10013

Book Title

Entity type

Access Statement

Open Access

License Rights

Restricted until