Numerical and semi-analytic core mass distributions in supersonic isothermal turbulence

dc.contributor.authorSchmidt, Wolfram
dc.contributor.authorKern, S. A. W.
dc.contributor.authorFederrath, Christoph
dc.contributor.authorKlessen, Ralf S.
dc.date.accessioned2022-01-17T00:58:59Z
dc.date.available2022-01-17T00:58:59Z
dc.date.issued2010
dc.date.updated2020-12-06T07:20:40Z
dc.description.abstractContext. Supersonic turbulence in the interstellar medium plays an important role in the formation of stars. The origin of this observed turbulence and its impact on the stellar initial mass function (IMF) still remain open questions. Aims. We investigate the influence of the turbulence forcing on the mass distributions of gravitationally unstable cores in simulations of isothermal supersonic turbulence. Methods. Data from two sets of non-selfgravitating hydrodynamic FLASH3 simulations with external stochastic forcing are analysed, each with static grid resolutions of 2563, 5123 and 10243 grid points. The first set applies solenoidal (divergence-free) forcing, while the second set uses purely compressive (curl-free) forcing to excite turbulent motions. From the resulting density field, we compute the mass distribution of gravitationally unstable cores by means of a clump-finding algorithm. Using the time-averaged probability density functions of the mass density, semi-analytic mass distributions are calculated from analytical theories. We apply stability criteria that are based on the Bonnor-Ebert mass resulting from the thermal pressure and from the sum of thermal and turbulent pressure. Results. Although there are uncertainties in applying of the clump-finding algorithm, we find systematic differences in the mass distributions obtained from solenoidal and compressive forcing. Compressive forcing produces a shallower slope in the high-mass power-law regime compared to solenoidal forcing. The mass distributions also depend on the Jeans length resulting from the choice of the mass in the computational box, which is freely scalable for non-selfgravitating isothermal turbulence. If the Jeans length corresponding to the density peaks is less than the grid cell size, the distributions obtained by clump-finding show a strong resolution dependence. Provided that all cores are numerically resolved and most cores are small compared to the length scale of the forcing, the normalised core mass distributions are close to the semi-analytic models. Conclusions. The driving mechanism of turbulence has a potential impact on the shape of the core mass function. Especially for the high-mass tails, the Hennebelle-Chabrier theory implies that the additional support due to turbulent pressure is important.en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn0004-6361en_AU
dc.identifier.urihttp://hdl.handle.net/1885/258433
dc.language.isoen_AUen_AU
dc.provenancehttps://v2.sherpa.ac.uk/id/publication/11142..."The Published Version can be archived in a Non-Commercial Institutional Repository" from SHERPA/RoMEO site (as at 17/01/2022).en_AU
dc.publisherEuropean Southern Observatory (ESO)en_AU
dc.rights© ESO 2010en_AU
dc.sourceAstronomy and Astrophysicsen_AU
dc.subjectAnalytic coreen_AU
dc.subjectAnalytic modelsen_AU
dc.subjectAnalytical theoryen_AU
dc.subjectComputational boxen_AU
dc.subjectDensity fieldsen_AU
dc.subjectDivergence freeen_AU
dc.subjectDriving mechanismen_AU
dc.subjectFinding algorithmen_AU
dc.subjectGrid cell sizeen_AU
dc.subjectGrid pointsen_AU
dc.subjectGrid resolutionen_AU
dc.subjectInitial massen_AU
dc.subjectInterstellar mediumsen_AU
dc.subjectISM : cloudsen_AU
dc.subjectISM: kinematics an hydrodynamicsen_AU
dc.subjectISM: cloudsen_AU
dc.subjectISM: kinematics and dynamicsen_AU
dc.subjectmethods: numericalen_AU
dc.subjectstars: formationen_AU
dc.subjectturbulenceen_AU
dc.titleNumerical and semi-analytic core mass distributions in supersonic isothermal turbulenceen_AU
dc.typeJournal articleen_AU
dcterms.accessRightsOpen Accessen_AU
local.bibliographicCitation.issue18en_AU
local.bibliographicCitation.lastpage14en_AU
local.bibliographicCitation.startpage1en_AU
local.contributor.affiliationSchmidt, Wolfram, Universitat Gottingenen_AU
local.contributor.affiliationKern, S. A. W. , Universität Würzburgen_AU
local.contributor.affiliationFederrath, Christoph, College of Science, ANUen_AU
local.contributor.affiliationKlessen, Ralf S., Heidelberg Universityen_AU
local.contributor.authoremailu5575624@anu.edu.auen_AU
local.contributor.authoruidFederrath, Christoph, u5575624en_AU
local.description.notesImported from ARIESen_AU
local.identifier.absfor020199 - Astronomical and Space Sciences not elsewhere classifieden_AU
local.identifier.absfor020110 - Stellar Astronomy and Planetary Systemsen_AU
local.identifier.absfor020104 - Galactic Astronomyen_AU
local.identifier.ariespublicationU3488905xPUB21867en_AU
local.identifier.citationvolume516en_AU
local.identifier.doi10.1051/0004-6361/200913904en_AU
local.identifier.scopusID2-s2.0-77957840510
local.identifier.thomsonID000280275400040
local.identifier.uidSubmittedByU3488905en_AU
local.publisher.urlhttp://www.aanda.org/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01_Schmidt_Numerical_and_semi-analytic_2010.pdf
Size:
401.56 KB
Format:
Adobe Portable Document Format
Back to topicon-arrow-up-solid
 
APRU
IARU
 
edX
Group of Eight Member

Acknowledgement of Country

The Australian National University acknowledges, celebrates and pays our respects to the Ngunnawal and Ngambri people of the Canberra region and to all First Nations Australians on whose traditional lands we meet and work, and whose cultures are among the oldest continuing cultures in human history.


Contact ANUCopyrightDisclaimerPrivacyFreedom of Information

+61 2 6125 5111 The Australian National University, Canberra

TEQSA Provider ID: PRV12002 (Australian University) CRICOS Provider Code: 00120C ABN: 52 234 063 906