Convolutional neural networks for transient candidate vetting in large-scale surveys
dc.contributor.author | Gieseke, Fabian | |
dc.contributor.author | Bloemen, Steven | |
dc.contributor.author | van den Bogaard, Cas | |
dc.contributor.author | Heskes, Tom | |
dc.contributor.author | Kindler, Jonas | |
dc.contributor.author | Scalzo, Richard | |
dc.contributor.author | Ribeiro, Valerio A R M | |
dc.contributor.author | van Roestel, Jan | |
dc.contributor.author | Groot, Paul J | |
dc.contributor.author | Yuan, Fang | |
dc.contributor.author | Moller, Anais | |
dc.contributor.author | Tucker, Brad | |
dc.date.accessioned | 2021-06-01T05:29:48Z | |
dc.date.available | 2021-06-01T05:29:48Z | |
dc.date.issued | 2017 | |
dc.date.updated | 2020-11-23T10:22:11Z | |
dc.description.abstract | Current synoptic sky surveys monitor large areas of the sky to find variable and transient astronomical sources. As the number of detections per night at a single telescope easily exceeds several thousand, current detection pipelines make intensive use of machine learning algorithms to classify the detected objects and to filter out the most interesting candidates. A number of upcoming surveys will produce up to three orders of magnitude more data, which renders high-precision classification systems essential to reduce the manual and, hence, expensive vetting by human experts. We present an approach based on convolutional neural networks to discriminate between true astrophysical sources and artefacts in reference-subtracted optical images. We show that relatively simple networks are already competitive with state-of-the-art systems and that their quality can further be improved via slightly deeper networks and additional pre-processing steps – eventually yielding models outperforming state-of-the-art systems. In particular, our best model correctly classifies about 97.3 per cent of all ‘real’ and 99.7 per cent of all ‘bogus’ instances on a test set containing 1942 ‘bogus’ and 227 ‘real’ instances in total. Furthermore, the networks considered in this work can also successfully classify these objects at hand without relying on difference images, which might pave the way for future detection pipelines not containing image subtraction steps at all. | en_AU |
dc.description.sponsorship | FG and VARMR acknowledge financial support from the Radboud Excellence Initiative. VARMR further acknowledges financial support from Fundac¸ao para a Ci ˜ encia e a Technologia (FCT) ˆ in the form of an exploratory project of reference IF/00498/2015, from Center for Research & Development in Mathematics and Applications (CIDMA) strategic project UID/MAT/04106/2013 and from Enabling Green E-science for the Square Kilometer Array Research Infrastructure (ENGAGE SKA), POCI-01-0145- FEDER-022217, funded by Programa Operacional Competitividade e Internacionalizac¸eo (COMPETE 2020) and FCT, Portugal. | en_AU |
dc.format.mimetype | application/pdf | en_AU |
dc.identifier.issn | 0035-8711 | en_AU |
dc.identifier.uri | http://hdl.handle.net/1885/235775 | |
dc.language.iso | en_AU | en_AU |
dc.provenance | https://v2.sherpa.ac.uk/id/publication/24618..."The Published Version can be archived in Institutional Repository" from SHERPA/RoMEO site (as at 1/06/2021). This article has been accepted for publication in [Journal Title] ©: 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. | en_AU |
dc.publisher | Oxford University Press | en_AU |
dc.rights | © 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society | en_AU |
dc.source | Monthly Notices of the Royal Astronomical Society | en_AU |
dc.subject | methods: data analysis | en_AU |
dc.subject | techniques: image processing | en_AU |
dc.subject | surveys | en_AU |
dc.subject | supernovae: general | en_AU |
dc.title | Convolutional neural networks for transient candidate vetting in large-scale surveys | en_AU |
dc.type | Journal article | en_AU |
dcterms.accessRights | Open Access | en_AU |
local.bibliographicCitation.issue | 3 | en_AU |
local.bibliographicCitation.lastpage | 3114 | en_AU |
local.bibliographicCitation.startpage | 3101 | en_AU |
local.contributor.affiliation | Gieseke, Fabian, Radboud University | en_AU |
local.contributor.affiliation | Bloemen, Steven, Radboud University | en_AU |
local.contributor.affiliation | van den Bogaard, Cas, Radboud University | en_AU |
local.contributor.affiliation | Heskes, Tom, Radboud University | en_AU |
local.contributor.affiliation | Kindler, Jonas, University of Osnabrück | en_AU |
local.contributor.affiliation | Scalzo, Richard, College of Science, ANU | en_AU |
local.contributor.affiliation | Ribeiro, Valerio A R M, Radboud University | en_AU |
local.contributor.affiliation | van Roestel, Jan, Radboud University | en_AU |
local.contributor.affiliation | Groot, Paul J, Radboud University | en_AU |
local.contributor.affiliation | Yuan, Fang, College of Science, ANU | en_AU |
local.contributor.affiliation | Moller, Anais, College of Science, ANU | en_AU |
local.contributor.affiliation | Tucker, Brad, College of Science, ANU | en_AU |
local.contributor.authoremail | u4956999@anu.edu.au | en_AU |
local.contributor.authoruid | Scalzo, Richard, u4956999 | en_AU |
local.contributor.authoruid | Yuan, Fang, u4981546 | en_AU |
local.contributor.authoruid | Moller, Anais, u1018833 | en_AU |
local.contributor.authoruid | Tucker, Brad, u4362859 | en_AU |
local.description.notes | Imported from ARIES | en_AU |
local.identifier.absfor | 170205 - Neurocognitive Patterns and Neural Networks | en_AU |
local.identifier.absfor | 020199 - Astronomical and Space Sciences not elsewhere classified | en_AU |
local.identifier.absseo | 970102 - Expanding Knowledge in the Physical Sciences | en_AU |
local.identifier.ariespublication | u4485658xPUB367 | en_AU |
local.identifier.citationvolume | 472 | en_AU |
local.identifier.doi | 10.1093/mnras/stx2161 | en_AU |
local.identifier.scopusID | 2-s2.0-85052497993 | |
local.identifier.uidSubmittedBy | u4485658 | en_AU |
local.publisher.url | http://mnras.oxfordjournals.org/ | en_AU |
local.type.status | Published Version | en_AU |
Downloads
Original bundle
1 - 1 of 1
Loading...
- Name:
- 01_Gieseke_Convolutional_neural_networks_2017.pdf
- Size:
- 7.73 MB
- Format:
- Adobe Portable Document Format