Lp-valued measures without finite X-semivariation for 2 < p < ∞
dc.contributor.author | Jefferies, B | |
dc.contributor.author | Okada, Susumu | |
dc.contributor.author | Rodrigues-Piazza, Luis | |
dc.date.accessioned | 2015-12-10T21:56:04Z | |
dc.date.issued | 2007 | |
dc.date.updated | 2015-12-09T07:34:10Z | |
dc.description.abstract | We show that for 1 < p < ∞, the property that every L p-valued vector measure has finite X-semivariation in L p(μ, X) is equivalent to the property that every continuous linear map from ℓ1 to X is p-summing. For 2 < p < ∞, we explicitly construct a | |
dc.identifier.issn | 1607-3606 | |
dc.identifier.uri | http://hdl.handle.net/1885/39249 | |
dc.publisher | NISC South Africa | |
dc.source | Quaestiones Mathematicae | |
dc.subject | Keywords: Absolutely p-summing; Lp-semivariation; Tensor product | |
dc.title | Lp-valued measures without finite X-semivariation for 2 < p < ∞ | |
dc.type | Journal article | |
local.bibliographicCitation.issue | 4 | |
local.bibliographicCitation.lastpage | 449 | |
local.bibliographicCitation.startpage | 437 | |
local.contributor.affiliation | Jefferies, B, University of New South Wales | |
local.contributor.affiliation | Okada, Susumu, College of Physical and Mathematical Sciences, ANU | |
local.contributor.affiliation | Rodrigues-Piazza, Luis , Universidad de Sevilla | |
local.contributor.authoremail | repository.admin@anu.edu.au | |
local.contributor.authoruid | Okada, Susumu, a236280 | |
local.description.embargo | 2037-12-31 | |
local.description.notes | Imported from ARIES | |
local.identifier.absfor | 010108 - Operator Algebras and Functional Analysis | |
local.identifier.ariespublication | u3169606xPUB174 | |
local.identifier.citationvolume | 30 | |
local.identifier.scopusID | 2-s2.0-37649005647 | |
local.identifier.uidSubmittedBy | u3169606 | |
local.type.status | Published Version |
Downloads
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 01_Jefferies_Lp-valued_measures_without_2007.pdf
- Size:
- 204.61 KB
- Format:
- Adobe Portable Document Format