Direct evidence for encoding of motion streaks in human visual cortex
Date
2012-12-05
Authors
Apthorp, Deborah
Schwarzkopf, D. Samuel
Kaul, Christian
Bahrami, Bahador
Alais, David
Rees, Geraint
Journal Title
Journal ISSN
Volume Title
Publisher
The Royal Society Publishing
Abstract
Temporal integration in the visual system causes fast-moving objects to generate static, oriented traces ('motion streaks'), which could be used to help judge direction of motion. While human psychophysics and single-unit studies in non-human primates are consistent with this hypothesis, direct neural evidence from the human cortex is still lacking. First, we provide psychophysical evidence that faster and slower motions are processed by distinct neural mechanisms: faster motion raised human perceptual thresholds for static orientations parallel to the direction of motion, whereas slower motion raised thresholds for orthogonal orientations. We then used functional magnetic resonance imaging to measure brain activity while human observers viewed either fast ('streaky') or slow random dot stimuli moving in different directions, or corresponding static-oriented stimuli. We found that local spatial patterns of brain activity in early retinotopic visual cortex reliably distinguished between static orientations. Critically, a multivariate pattern classifier trained on brain activity evoked by these static stimuli could then successfully distinguish the direction of fast ('streaky') but not slow motion. Thus, signals encoding static-oriented streak information are present in human early visual cortex when viewing fast motion. These experiments show that motion streaks are present in the human visual system for faster motion.
Description
Keywords
adult, female, humans, magnetic resonance imaging, male, middle aged, photic stimulation, psychophysics, visual cortex, motion perception
Citation
Collections
Source
Proceedings of the Royal Society B: Biological Sciences
Type
Journal article