The evolution of multiple active site configurations in a designed enzyme

Authors

Hong, Nan-Sook
Petrovic, Dusan
Lee, Zhong (Richmond)
Gryn'ova, Ganna
Purg, Miha
Saunders, Jake
Bauer, Paul
Carr, Paul D.
Lin, Ching Yeh
Mabbitt, Peter

Journal Title

Journal ISSN

Volume Title

Publisher

Macmillan Publishers Ltd

Abstract

Developments in computational chemistry, bioinformatics, and laboratory evolution have facilitated the de novo design and catalytic optimization of enzymes. Besides creating useful catalysts, the generation and iterative improvement of designed enzymes can provide valuable insight into the interplay between the many phenomena that have been suggested to contribute to catalysis. In this work, we follow changes in conformational sampling, electrostatic preorganization, and quantum tunneling along the evolutionary trajectory of a designed Kemp eliminase. We observe that in the Kemp Eliminase KE07, instability of the designed active site leads to the emergence of two additional active site configurations. Evolutionary conformational selection then gradually stabilizes the most efficient configuration, leading to an improved enzyme. This work exemplifies the link between conformational plasticity and evolvability and demonstrates that residues remote from the active sites of enzymes play crucial roles in controlling and shaping the active site for efficient catalysis.

Description

Citation

Source

Nature Communications

Book Title

Entity type

Access Statement

Open Access

License Rights

Creative Commons Attribution 4.0 International License

Restricted until