Discovering shape classes using tree edit-distance and pairwise clustering

dc.contributor.authorTorsello, Andreas
dc.contributor.authorRobles-Kelly, Antonio
dc.contributor.authorHancock, Edwin R
dc.date.accessioned2015-12-08T22:09:04Z
dc.date.issued2007
dc.date.updated2015-12-08T07:21:47Z
dc.description.abstractThis paper describes work aimed at the unsupervised learning of shape-classes from shock trees. We commence by considering how to compute the edit distance between weighted trees. We show how to transform the tree edit distance problem into a series of maximum weight clique problems, and show how to use relaxation labeling to find an approximate solution. This allows us to compute a set of pairwise distances between graph-structures. We show how the edit distances can be used to compute a matrix of pairwise affinities using χ2 statistics. We present a maximum likelihood method for clustering the graphs by iteratively updating the elements of the affinity matrix. This involves interleaved steps for updating the affinity matrix using an eigendecomposition method and updating the cluster membership indicators. We illustrate the new tree clustering framework on shock-graphs extracted from the silhouettes of 2D shapes.
dc.identifier.issn0920-5691
dc.identifier.urihttp://hdl.handle.net/1885/28863
dc.publisherSpringer
dc.sourceInternational Journal of Computer Vision
dc.subjectKeywords: Data structures; Eigenvalues and eigenfunctions; Graph theory; Matrix algebra; Statistics; Trees (mathematics); Edit-distance; Pairwise clustering; Shape recognition; Shock trees; Problem solving Edit-distance; Pairwise clustering; Shape recognition; Shock trees
dc.titleDiscovering shape classes using tree edit-distance and pairwise clustering
dc.typeJournal article
local.bibliographicCitation.issue3
local.bibliographicCitation.lastpage285
local.bibliographicCitation.startpage259
local.contributor.affiliationTorsello, Andreas, Ca' Foscari University of Venice
local.contributor.affiliationRobles-Kelly, Antonio, College of Engineering and Computer Science, ANU
local.contributor.affiliationHancock, Edwin R, University of York
local.contributor.authoremailu1811090@anu.edu.au
local.contributor.authoruidRobles-Kelly, Antonio, u1811090
local.description.embargo2037-12-31
local.description.notesImported from ARIES
local.identifier.absfor080104 - Computer Vision
local.identifier.ariespublicationu3594520xPUB61
local.identifier.citationvolume72
local.identifier.doi10.1007/s11263-006-8929-y
local.identifier.scopusID2-s2.0-33846221964
local.identifier.uidSubmittedByu3594520
local.type.statusPublished Version

Downloads

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01_Torsello_Discovering_shape_classes_2007.pdf
Size:
828.77 KB
Format:
Adobe Portable Document Format
Back to topicon-arrow-up-solid
 
APRU
IARU
 
edX
Group of Eight Member

Acknowledgement of Country

The Australian National University acknowledges, celebrates and pays our respects to the Ngunnawal and Ngambri people of the Canberra region and to all First Nations Australians on whose traditional lands we meet and work, and whose cultures are among the oldest continuing cultures in human history.


Contact ANUCopyrightDisclaimerPrivacyFreedom of Information

+61 2 6125 5111 The Australian National University, Canberra

TEQSA Provider ID: PRV12002 (Australian University) CRICOS Provider Code: 00120C ABN: 52 234 063 906