A note on the discrete Aleksandrov-Bakelman maximum principle

dc.contributor.authorKuo, H
dc.contributor.authorTrudinger, Neil
dc.date.accessioned2015-12-13T23:20:45Z
dc.date.available2015-12-13T23:20:45Z
dc.date.issued2000
dc.date.updated2015-12-12T09:04:26Z
dc.description.abstractIn previous works, we have established discrete versions of the Aleksandrov -Bakelman maximum principle for elliptic operators, on general meshes in Euclidean space. In this paper, we prove a variant of these estimates in terms of a discrete analogue of the determinant of the coefficient matrix in the differential operator case. Our treatment depends on an interesting connection between the determinant and volumes of cells in the underlying mesh.
dc.identifier.issn1027-5487
dc.identifier.urihttp://hdl.handle.net/1885/90855
dc.publisherMathematical Society of the Republic of China
dc.sourceTaiwanese Journal of Mathematics
dc.subjectKeywords: Balanced operator; Discrete Aleksandrov-Bakelman maximum principle; Elliptic operator; Monotone operator
dc.titleA note on the discrete Aleksandrov-Bakelman maximum principle
dc.typeJournal article
local.bibliographicCitation.issue1
local.bibliographicCitation.lastpage64
local.bibliographicCitation.startpage55
local.contributor.affiliationKuo, H, National Chung-Hsing University
local.contributor.affiliationTrudinger, Neil, College of Physical and Mathematical Sciences, ANU
local.contributor.authoruidTrudinger, Neil, u7301385
local.description.notesImported from ARIES
local.description.refereedYes
local.identifier.absfor010102 - Algebraic and Differential Geometry
local.identifier.ariespublicationMigratedxPub21339
local.identifier.citationvolume4
local.identifier.scopusID2-s2.0-0012993479
local.type.statusPublished Version

Downloads