Huge lithium storage in 2D bilayer structures with point defects

dc.contributor.authorTan, Xin
dc.contributor.authorTanwar, Khagesh
dc.contributor.authorSmith, Sean
dc.contributor.authorChen, Ying Ian
dc.date.accessioned2023-08-02T02:08:20Z
dc.date.issued2021
dc.date.updated2022-06-19T08:16:22Z
dc.description.abstractCurrent Li-ion batteries have a low energy density mainly because of the low Li intercalation level in graphite anodes. The high-density packing of lithium atoms in electrode materials amplifies the storage capacity and efficiency of energy storage devices. The use of two-dimensional (2D) bilayer structures offers an immediate advantage of high-density lithium storage compared to conventional graphite electrodes. However, the lithium storage in 2D homostructures and heterostructures is still limited. In the present theoretical study, we have modified 2D bilayer structures by creating controlled point defects. Using ab initio calculations, we show that the 2D bilayer structures of boron nitride-boron nitride (BN-BN), graphene-boron nitride (G-BN), and graphene-graphene (G-G) with a point defect in each structure are more stable and can store up to 11 times more Li atoms. On increasing the defect density, the stability of the G-BN structure increases but the lithium storage capacity does not increase. Except for the first Li atom, the intercalation of extra Li atoms does not cause volume changes of the defective 2D bilayer structures. Defective 2D bilayer structures might be a high-energy-density anode material.en_AU
dc.description.sponsorshipK.T. thanks Deakin’s international Ph.D. scholarship. Y.C.acknowledges gratefully thefinancial contribution from theAustralian Research Council under the Discovery(DP190102656) and Linkage (LP170100784) projects. Thisresearch was undertaken with the assistance of resourcesprovided by the National Computational Infrastructure (NCI)facility at the Australian National University, allocated throughboth the National Computational Merit Allocation Schemesupported by the Australian Government and the AustralianResearch Council grant LE190100021 (Sustaining andstrengthening merit-based access at NCI, 2019−2021)en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn1932-7447en_AU
dc.identifier.urihttp://hdl.handle.net/1885/294741
dc.language.isoen_AUen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.relationhttp://purl.org/au-research/grants/arc/DP190102656en_AU
dc.relationhttp://purl.org/au-research/grants/arc/LP170100784en_AU
dc.relationhttp://purl.org/au-research/grants/arc/LE190100021en_AU
dc.rights© 2021 American Chemical Societyen_AU
dc.sourceJournal of Physical Chemistry Cen_AU
dc.titleHuge lithium storage in 2D bilayer structures with point defectsen_AU
dc.typeJournal articleen_AU
local.bibliographicCitation.issue43en_AU
local.bibliographicCitation.lastpage23603en_AU
local.bibliographicCitation.startpage23597en_AU
local.contributor.affiliationTan, Xin, College of Science, ANUen_AU
local.contributor.affiliationTanwar, Khagesh, Deakin Universityen_AU
local.contributor.affiliationSmith, Sean, RSCH Research & Innovation Portfolio, ANUen_AU
local.contributor.affiliationChen, Ying Ian, Deakin Universityen_AU
local.contributor.authoremailu1052556@anu.edu.auen_AU
local.contributor.authoruidTan, Xin, u1052556en_AU
local.contributor.authoruidSmith, Sean, u1056946en_AU
local.description.embargo2099-12-31
local.description.notesImported from ARIESen_AU
local.identifier.absfor400804 - Electrical energy storageen_AU
local.identifier.absseo280110 - Expanding knowledge in engineeringen_AU
local.identifier.ariespublicationa383154xPUB23550en_AU
local.identifier.citationvolume125en_AU
local.identifier.doi10.1021/acs.jpcc.1c06002en_AU
local.identifier.scopusID2-s2.0-85118806298
local.identifier.uidSubmittedBya383154en_AU
local.publisher.urlhttps://pubs.acs.org/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
acs.jpcc.1c06002.pdf
Size:
4.05 MB
Format:
Adobe Portable Document Format
Description:
Back to topicon-arrow-up-solid
 
APRU
IARU
 
edX
Group of Eight Member

Acknowledgement of Country

The Australian National University acknowledges, celebrates and pays our respects to the Ngunnawal and Ngambri people of the Canberra region and to all First Nations Australians on whose traditional lands we meet and work, and whose cultures are among the oldest continuing cultures in human history.


Contact ANUCopyrightDisclaimerPrivacyFreedom of Information

+61 2 6125 5111 The Australian National University, Canberra

TEQSA Provider ID: PRV12002 (Australian University) CRICOS Provider Code: 00120C ABN: 52 234 063 906