Exotic silicon phases synthesized through ultrashort laser-induced microexplosion: Characterization with Raman microspectroscopy

dc.contributor.authorSmillie, Lachlan
dc.contributor.authorNiihori, Marika
dc.contributor.authorRapp, Ludovic
dc.contributor.authorHaberl, Bianca
dc.contributor.authorWilliams, Jim
dc.contributor.authorBradby, Jodie
dc.contributor.authorPickard, Chris J.
dc.contributor.authorRode, Andrei
dc.date.accessioned2022-07-18T23:58:02Z
dc.date.available2022-07-18T23:58:02Z
dc.date.issued2020
dc.date.updated2021-08-01T08:22:54Z
dc.description.abstractExotic metastable phases of silicon formed under high pressure are expected to have attractive semiconducting properties including narrow band gaps that open up novel technological applications. Confined microexplosions induced by powerful ultrashort laser pulses have been demonstrated as an advanced tool for the creation of new high-pressure phases that cannot be synthesized by other means. Tightly focused laser pulses are used to generate localized modifications inside the material structure, providing the possibility for precise controlled band-gap engineering. In this study, noninvasive Raman spectroscopy was used for analysis of laser-modified zones in silicon and to determine the metastable high-pressure phases contained. Low laser energies induced the formation of amorphous-only silicon, while higher energies led to crystalline silicon polymorphs within the modifications, albeit under considerable residual stress up to 4.5 GPa. The presence of the structurally similar r8-Si, bc8-Si, and bt8-Si phases is revealed, as well as other yet to be identified phases, and the stacking-related 9R Si polytype is evidenced, presumably stress-induced by the highly compressed laser-modified zone. The ab initio random structure searching approach is used to calculate the Raman signatures and to help identify different Si polymorphs. These findings by Raman spectroscopy from ultrashort laser-induced microexplosion sites may yield insights into the local structure and properties of new silicon metastable phases and the prospect of utilizing exotic phases for extending current applications.en_AU
dc.description.sponsorshipThe authors acknowledge the support by the Australian Government through the Australian Research Council’s Discovery scheme, Project No. DP170100131.en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn2475-9953en_AU
dc.identifier.urihttp://hdl.handle.net/1885/269764
dc.language.isoen_AUen_AU
dc.provenancehttps://v2.sherpa.ac.uk/id/publication/33503..."The Published Version can be archived in Institutional Repository" from SHERPA/RoMEO site (as at 19/07/2022).en_AU
dc.publisherAmerican Physical Societyen_AU
dc.relationhttp://purl.org/au-research/grants/arc/DP170100131en_AU
dc.rights© 2020 American Physical Societyen_AU
dc.sourcePhysical Review Materialsen_AU
dc.titleExotic silicon phases synthesized through ultrashort laser-induced microexplosion: Characterization with Raman microspectroscopyen_AU
dc.typeJournal articleen_AU
dcterms.accessRightsOpen Accessen_AU
local.bibliographicCitation.issue9en_AU
local.bibliographicCitation.lastpage093803-8en_AU
local.bibliographicCitation.startpage093803-1en_AU
local.contributor.affiliationSmillie, Lachlan, College of Science, ANUen_AU
local.contributor.affiliationNiihori, Marika, College of Science, ANUen_AU
local.contributor.affiliationRapp, Ludovic, College of Science, ANUen_AU
local.contributor.affiliationHaberl, Bianca, Oak Ridge National Laboratoryen_AU
local.contributor.affiliationWilliams, Jim, College of Science, ANUen_AU
local.contributor.affiliationBradby, Jodie, College of Science, ANUen_AU
local.contributor.affiliationPickard, Chris J., University of Cambridgeen_AU
local.contributor.affiliationRode, Andrei, College of Science, ANUen_AU
local.contributor.authoremailu5313693@anu.edu.auen_AU
local.contributor.authoruidSmillie, Lachlan, u5313693en_AU
local.contributor.authoruidNiihori, Marika, u6082263en_AU
local.contributor.authoruidRapp, Ludovic, u5119755en_AU
local.contributor.authoruidWilliams, Jim, u8809701en_AU
local.contributor.authoruidBradby, Jodie, u9908195en_AU
local.contributor.authoruidRode, Andrei, u8913168en_AU
local.description.notesImported from ARIESen_AU
local.identifier.ariespublicationa383154xPUB13901en_AU
local.identifier.citationvolume4en_AU
local.identifier.doi10.1103/PhysRevMaterials.4.093803en_AU
local.identifier.scopusID2-s2.0-85092723748
local.identifier.uidSubmittedBya383154en_AU
local.publisher.urlhttp://journals.aps.org/prmaterials/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Isogonal non-crystallographic periodic graphs.pdf
Size:
735.56 KB
Format:
Adobe Portable Document Format
Description:
Back to topicon-arrow-up-solid
 
APRU
IARU
 
edX
Group of Eight Member

Acknowledgement of Country

The Australian National University acknowledges, celebrates and pays our respects to the Ngunnawal and Ngambri people of the Canberra region and to all First Nations Australians on whose traditional lands we meet and work, and whose cultures are among the oldest continuing cultures in human history.


Contact ANUCopyrightDisclaimerPrivacyFreedom of Information

+61 2 6125 5111 The Australian National University, Canberra

TEQSA Provider ID: PRV12002 (Australian University) CRICOS Provider Code: 00120C ABN: 52 234 063 906