Revealing the Transition Dynamics from Q Switching to Mode Locking in a Soliton Laser

dc.contributor.authorLiu, Xueming
dc.contributor.authorPopa, Daniel
dc.contributor.authorAkhmediev, Nail
dc.date.accessioned2020-06-03T04:12:10Z
dc.date.available2020-06-03T04:12:10Z
dc.date.issued2019
dc.date.updated2019-12-19T07:15:30Z
dc.description.abstractQ switching (QS) and mode locking (ML) are the two main techniques enabling generation of ultrashort pulses. Here, we report the first observation of pulse evolution and dynamics in the QS-ML transition stage, where the ML soliton formation evolves from the QS pulses instead of relaxation oscillations (or quasicontinuous-wave oscillations) reported in previous studies. We discover a new way of soliton buildup in an ultrafast laser, passing through four stages: initial spontaneous noise, QS, beating dynamics, and ML. We reveal that multiple subnanosecond pulses coexist within the laser cavity during the QS, with one dominant pulse transforming into a soliton when reaching the ML stage. We propose a theoretical model to simulate the spectrotemporal beating dynamics (a critical process of QS-ML transition) and the Kelly sidebands of the as-formed solitons. Numerical results show that beating dynamics is induced by the interference between a dominant pulse and multiple subordinate pulses with varying temporal delays, in agreement with experimental observations. Our results allow a better understanding of soliton formation in ultrafast lasers, which have widespread applications in science and technology.en_AU
dc.description.sponsorshipThis Letter was partially supported by the National Natural Science Foundation of China under Grants No. 61525505 and No. 11774310.en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn0031-9007en_AU
dc.identifier.urihttp://hdl.handle.net/1885/204789
dc.language.isoen_AUen_AU
dc.provenancehttp://sherpa.ac.uk/romeo/issn/0031-9007/..."author can archive publisher's version/PDF" from SHERPA/RoMEO site (as at 3/06/2020).en_AU
dc.publisherAmerican Physical Societyen_AU
dc.rights© 2019 American Physical Societyen_AU
dc.sourcePhysical Review Lettersen_AU
dc.titleRevealing the Transition Dynamics from Q Switching to Mode Locking in a Soliton Laseren_AU
dc.typeJournal articleen_AU
dcterms.accessRightsOpen Accessen_AU
local.bibliographicCitation.issue9en_AU
local.bibliographicCitation.lastpage093901-6en_AU
local.bibliographicCitation.startpage093901-1en_AU
local.contributor.affiliationLiu, Xueming, Zhejiang Universityen_AU
local.contributor.affiliationPopa, Daniel, University of Cambridgeen_AU
local.contributor.affiliationAkhmediev, Nail, College of Science, ANUen_AU
local.contributor.authoremailu9111648@anu.edu.auen_AU
local.contributor.authoruidAkhmediev, Nail, u9111648en_AU
local.description.notesImported from ARIESen_AU
local.identifier.absfor020502 - Lasers and Quantum Electronicsen_AU
local.identifier.absseo970102 - Expanding Knowledge in the Physical Sciencesen_AU
local.identifier.ariespublicationu3102795xPUB4475en_AU
local.identifier.citationvolume123en_AU
local.identifier.doi10.1103/PhysRevLett.123.093901en_AU
local.identifier.scopusID2-s2.0-85072015080
local.identifier.uidSubmittedByu3102795en_AU
local.publisher.urlhttps://www.aps.org/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01_Liu_Revealing_the_Transition_2019.pdf
Size:
1.91 MB
Format:
Adobe Portable Document Format
Back to topicon-arrow-up-solid
 
APRU
IARU
 
edX
Group of Eight Member

Acknowledgement of Country

The Australian National University acknowledges, celebrates and pays our respects to the Ngunnawal and Ngambri people of the Canberra region and to all First Nations Australians on whose traditional lands we meet and work, and whose cultures are among the oldest continuing cultures in human history.


Contact ANUCopyrightDisclaimerPrivacyFreedom of Information

+61 2 6125 5111 The Australian National University, Canberra

TEQSA Provider ID: PRV12002 (Australian University) CRICOS Provider Code: 00120C ABN: 52 234 063 906