The Impact of Interacting Climate Modes on East Australian Precipitation Moisture Sources

Date

2022

Authors

Holgate, Chiara
Evans, Jason
Taschetto, Andrea S.
Gupta, Alexander Sen
Santoso, A.

Journal Title

Journal ISSN

Volume Title

Publisher

American Meteorological Society

Abstract

Modes of climate variability can drive significant changes to regional climate affecting extremes such as droughts, floods, and bushfires. The need to forecast these extremes and expected future increases in their intensity and frequency motivates a need to better understand the physical processes that connect climate modes to regional precipitation. Focusing on east Australia, where precipitation is driven by multiple interacting climate modes, this study provides a new perspective into the links between large-scale modes of climate variability and precipitation. Using a Lagrangian back-trajectory approach, we examine how El Niño–Southern Oscillation (ENSO) modifies the supply of evaporative moisture for precipitation, and how this is modulated by the Indian Ocean dipole (IOD) and southern annular mode (SAM). We demonstrate that La Niña modifies large-scale moisture transport together with local thermodynamic changes to facilitate local precipitation generation, whereas below-average precipitation during El Niño stems predominantly from increased regional subsidence. These dynamic–thermodynamic processes were often more pronounced during co-occurring La Niña/negative IOD and El Niño/positive IOD periods. As the SAM is less strongly correlated with ENSO, the impact of co-occurring ENSO and SAM largely depended on the state of ENSO. La Niña–related processes were exacerbated when combined with +SAM and dampened when combined with −SAM, and vice versa during El Niño. This new perspective on how interacting climate modes physically influence regional precipitation can help elucidate how model biases affect the simulation of Australian climate, facilitating model improvement and understanding of regional impacts from long-term changes in these modes.

Description

Keywords

ENSO, Lagrangian circulation/transport, Teleconnections, Precipitation, Water vapor

Citation

Source

Journal of Climate

Type

Journal article

Book Title

Entity type

Access Statement

License Rights

Restricted until

Downloads