Model-Based Pilot and Data Power Adaptation in PSAM with Periodic Delayed Feedback
Date
Authors
Lamahewa, Tharaka
Sadeghi, Parastoo
Kennedy, Rodney
Rapajic, Predrag
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Electrical and Electronics Engineers (IEEE Inc)
Abstract
We consider the optimum design of pilot-symbolassisted modulation (PSAM) schemes with feedback. The received signal is periodically fed back to the transmitter through a noiseless delayed link and the time-varying channel is modeled as a Gauss-Markov process. We optimize a lower bound on the channel capacity which incorporates the PSAM parameters and Kalman-based channel estimation and prediction. The parameters available for the capacity optimization are the data power adaptation strategy, pilot spacing and pilot power ratio, subject to an average power constraint. Compared to the optimized open-loop PSAM (i.e., the case where no feedback is provided from the receiver), our results show that even in the presence of feedback delay, the optimized power adaptation provides higher information rates at low signal-to-noise ratios (SNR) in mediumrate fading channels. However, in fast fading channels, even the presence of modest feedback delay dissipates the advantages of power adaptation.
Description
Citation
Collections
Source
IEEE Transactions on Wireless Communications
Type
Book Title
Entity type
Access Statement
License Rights
Restricted until
2037-12-31
Downloads
File
Description