On the [α/Fe]–[Fe/H] relations in early-type galaxies

Date

2018

Authors

Vincenzo, Fiorenzo
Kobayashi, Chiaki
Taylor, Philip

Journal Title

Journal ISSN

Volume Title

Publisher

Royal Astronomical Society

Abstract

We study how the predicted [α/Fe]–[Fe/H] relations in early-type galaxies vary as functions of their stellar masses, ages, and stellar velocity dispersions, by making use of cosmological chemodynamical simulations with feedback from active galactic nuclei. Our model includes a detailed treatment for the chemical enrichment from dying stars, core-collapse supernovae (both Type II and hypernovae) and Type Ia supernovae. At redshift z = 0, we create a catalogue of 526 galaxies, among which we determine 80 early-type galaxies. From the analysis of our simulations, we find [α/Fe]–[Fe/H] relations similar to the Galactic bulge. We also find that, in the oldest galaxies, Type Ia supernovae start to contribute at higher [Fe/H] than in the youngest ones. On the average, early-type galaxies with larger stellar masses (and, equivalently, higher stellar velocity dispersions) have higher [α/Fe] ratios, at fixed [Fe/H]. This is qualitatively consistent with the recent observations of Sybilska et al., but quantitatively there are mismatches, which might require stronger feedback, sub-classes of Type Ia Supernovae, or a variable initial mass function to address.

Description

Keywords

hydrodynamics, stars: abundances, supernovae: general, galaxies: abundances, galaxies: elliptical and lenticular, cD, galaxies: evolution

Citation

Source

Monthly Notices of the Royal Astronomical Society

Type

Journal article

Book Title

Entity type

Access Statement

Open Access

License Rights

Restricted until