Deeply Subwavelength Metasurface Resonators for Terahertz Wavefront Manipulation
dc.contributor.author | Liu, Mingkai | |
dc.contributor.author | Yang, Quanlong | |
dc.contributor.author | Aoni, Rifat Ahmmed | |
dc.contributor.author | Raj, Vidur | |
dc.contributor.author | Komar, Andrei | |
dc.contributor.author | Han, Jiaguang | |
dc.contributor.author | Rahmani, Mohsen | |
dc.contributor.author | Hattori, Haroldo T. | |
dc.contributor.author | Neshev, Dragomir | |
dc.contributor.author | Powell, David A. | |
dc.contributor.author | Shadrivov, Ilya | |
dc.date.accessioned | 2020-03-17T03:09:51Z | |
dc.date.issued | 2019-08-13 | |
dc.date.updated | 2019-11-25T07:42:46Z | |
dc.description.abstract | Metasurfaces offer a highly flexible platform for controlling the propagation and localization of electromagnetic waves. Due to the relatively large size of commonly used resonators, various undesirable effects including spatial dispersion and spurious diffraction occur, thus limiting the metasurface performance. To overcome these problems, one straightforward approach is to utilize deeply subwavelength metaunits. In contrast to conventional approaches that minimize the resonator size by reshaping the metallic patches, the capacitive gaps are reshaped, an approach which is more robust to material loss, minimizing the problem of overdamping. As an example, a novel design based on interdigital capacitors (meander gap) is introduced with extremely subwavelength gaps for use in the terahertz frequency range. The size of the new resonator can be reduced to below λ/30 in a reflective-type terahertz metasurface, while maintaining the 2ππ phase shift required for full wavefront control. Using an advanced electron-beam lithography technique, a proof-of-concept experiment is performed and a 5 mm × 5 mm beam deflector is fabricated, with the capacitive gaps as small as 300 nm (≈λ/1130). The device performance is characterized using angle-resolved time-domain spectroscopy. The study provides useful insight for ultracompact metadevices based on deeply subwavelength metaunits working at terahertz frequencies and beyond. | en_AU |
dc.description.sponsorship | This work was supported by the Asian Office of Aerospace Research and Development (AOARD) (FA2386-15-1-4064) and the Linkage grant LP160100253. | en_AU |
dc.format.extent | 8 pages | en_AU |
dc.format.mimetype | application/pdf | en_AU |
dc.identifier.uri | http://hdl.handle.net/1885/202350 | |
dc.language.iso | en_AU | en_AU |
dc.provenance | http://sherpa.ac.uk/romeo/issn/2195-1071/ Author can archive post-print (ie final draft post-refereeing), with 12 months embargo. On author's personal website, institutional repositories, arXiv, AgEcon, PhilPapers, PubMed Central, RePEc or Social Science Research Network (Sherpa/Romeo as of 18/3/2020) | |
dc.publisher | Wiley-VCH Verlag GMBH | en_AU |
dc.relation | http://purl.org/au-research/grants/arc/LP160100253 | en_AU |
dc.rights | © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. https://authorservices.wiley.com/author-resources/Journal-Authors/licensing/self-archiving.html This is the peer reviewed version of the following article: Mingkai Liu,* Quanlong Yang, Ahmmed A. Rifat, Vidur Raj, Andrei Komar, Jiaguang Han, Mohsen Rahmani, Haroldo T. Hattori, Dragomir Neshev, David A. Powell, and Ilya V. Shadrivov, Deeply subwavelength metasurface resonators for Terahertz wavefront manipulation, Advanced Optical Materials (2019), 7(21) 1900736, doi 10.1002/adom.201900736, which has been published in final form at https://doi.org/10.1002/adom.201900736. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. (Publisher journal website as of 18/3/2020) | en_AU |
dc.source | Advanced Optical Materials | en_AU |
dc.subject | deeply subwavelength, metasurfaces, terahertz, underdamped, wavefront | en_AU |
dc.title | Deeply Subwavelength Metasurface Resonators for Terahertz Wavefront Manipulation | en_AU |
dc.type | Journal article | en_AU |
dcterms.accessRights | Open Access | |
local.bibliographicCitation.issue | 21 | en_AU |
local.bibliographicCitation.startpage | 1900736 | en_AU |
local.contributor.affiliation | Liu, Mingkai, College of Science, The Australian National University | en_AU |
local.contributor.affiliation | Yang, Quanlong, College of Science, The Australian National University | en_AU |
local.contributor.affiliation | Aoni, Rifat Ahmmed, College of Science, The Australian National University | en_AU |
local.contributor.affiliation | Raj, Vidur, College of Science, The Australian National University | en_AU |
local.contributor.affiliation | Komar, Andrei, College of Science, The Australian National University | en_AU |
local.contributor.affiliation | Han, Jiaguang, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology | en_AU |
local.contributor.affiliation | Rahmani, Mohsen, College of Science, The Australian National University | en_AU |
local.contributor.affiliation | Hattori, Haroldo T., UNSW | en_AU |
local.contributor.affiliation | Neshev, Dragomir, College of Science, The Australian National University | en_AU |
local.contributor.affiliation | Powell, David A., School of Engineering and Information Technology, University of New South Wales | en_AU |
local.contributor.affiliation | Shadrivov, Ilya, College of Science, The Australian National University | en_AU |
local.contributor.authoremail | u5037977@anu.edu.au | en_AU |
local.contributor.authoruid | Liu, Mingkai, u5037977 | en_AU |
local.contributor.authoruid | Yang, Quanlong, u1047745 | en_AU |
local.contributor.authoruid | Aoni, Rifat Ahmmed, u6167858 | en_AU |
local.contributor.authoruid | Raj, Vidur, u5858523 | en_AU |
local.contributor.authoruid | Komar, Andrei, u5318466 | en_AU |
local.contributor.authoruid | Rahmani, Mohsen, u1011372 | en_AU |
local.contributor.authoruid | Neshev, Dragomir, u4049045 | en_AU |
local.contributor.authoruid | Shadrivov, Ilya, u3923606 | en_AU |
local.description.notes | Imported from ARIES. | en_AU |
local.identifier.absfor | 020503 - Nonlinear Optics and Spectroscopy | en_AU |
local.identifier.absseo | 970102 - Expanding Knowledge in the Physical Sciences | en_AU |
local.identifier.ariespublication | u3102795xPUB4564 | en_AU |
local.identifier.citationvolume | 7 | en_AU |
local.identifier.doi | 10.1002/adom.201900736 | en_AU |
local.identifier.essn | 2195-1071 | en_AU |
local.identifier.thomsonID | WOS:000480920000001 | |
local.identifier.uidSubmittedBy | u3102795 | en_AU |
local.publisher.url | https://www.wiley.com/ | en_AU |
local.type.status | Accepted Version | en_AU |
Downloads
Original bundle
1 - 1 of 1
Loading...
- Name:
- Deep_subwavelength_meta_units_for_terahertz_wave_controls__combined_.pdf
- Size:
- 3.22 MB
- Format:
- Adobe Portable Document Format