Deeply Subwavelength Metasurface Resonators for Terahertz Wavefront Manipulation

dc.contributor.authorLiu, Mingkai
dc.contributor.authorYang, Quanlong
dc.contributor.authorAoni, Rifat Ahmmed
dc.contributor.authorRaj, Vidur
dc.contributor.authorKomar, Andrei
dc.contributor.authorHan, Jiaguang
dc.contributor.authorRahmani, Mohsen
dc.contributor.authorHattori, Haroldo T.
dc.contributor.authorNeshev, Dragomir
dc.contributor.authorPowell, David A.
dc.contributor.authorShadrivov, Ilya
dc.date.accessioned2020-03-17T03:09:51Z
dc.date.issued2019-08-13
dc.date.updated2019-11-25T07:42:46Z
dc.description.abstractMetasurfaces offer a highly flexible platform for controlling the propagation and localization of electromagnetic waves. Due to the relatively large size of commonly used resonators, various undesirable effects including spatial dispersion and spurious diffraction occur, thus limiting the metasurface performance. To overcome these problems, one straightforward approach is to utilize deeply subwavelength metaunits. In contrast to conventional approaches that minimize the resonator size by reshaping the metallic patches, the capacitive gaps are reshaped, an approach which is more robust to material loss, minimizing the problem of overdamping. As an example, a novel design based on interdigital capacitors (meander gap) is introduced with extremely subwavelength gaps for use in the terahertz frequency range. The size of the new resonator can be reduced to below λ/30 in a reflective-type terahertz metasurface, while maintaining the 2ππ phase shift required for full wavefront control. Using an advanced electron-beam lithography technique, a proof-of-concept experiment is performed and a 5 mm × 5 mm beam deflector is fabricated, with the capacitive gaps as small as 300 nm (≈λ/1130). The device performance is characterized using angle-resolved time-domain spectroscopy. The study provides useful insight for ultracompact metadevices based on deeply subwavelength metaunits working at terahertz frequencies and beyond.en_AU
dc.description.sponsorshipThis work was supported by the Asian Office of Aerospace Research and Development (AOARD) (FA2386-15-1-4064) and the Linkage grant LP160100253.en_AU
dc.format.extent8 pagesen_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.urihttp://hdl.handle.net/1885/202350
dc.language.isoen_AUen_AU
dc.provenancehttp://sherpa.ac.uk/romeo/issn/2195-1071/ Author can archive post-print (ie final draft post-refereeing), with 12 months embargo. On author's personal website, institutional repositories, arXiv, AgEcon, PhilPapers, PubMed Central, RePEc or Social Science Research Network (Sherpa/Romeo as of 18/3/2020)
dc.publisherWiley-VCH Verlag GMBHen_AU
dc.relationhttp://purl.org/au-research/grants/arc/LP160100253en_AU
dc.rights© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. https://authorservices.wiley.com/author-resources/Journal-Authors/licensing/self-archiving.html This is the peer reviewed version of the following article: Mingkai Liu,* Quanlong Yang, Ahmmed A. Rifat, Vidur Raj, Andrei Komar, Jiaguang Han, Mohsen Rahmani, Haroldo T. Hattori, Dragomir Neshev, David A. Powell, and Ilya V. Shadrivov, Deeply subwavelength metasurface resonators for Terahertz wavefront manipulation, Advanced Optical Materials (2019), 7(21) 1900736, doi 10.1002/adom.201900736, which has been published in final form at https://doi.org/10.1002/adom.201900736. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. (Publisher journal website as of 18/3/2020)en_AU
dc.sourceAdvanced Optical Materialsen_AU
dc.subjectdeeply subwavelength, metasurfaces, terahertz, underdamped, wavefronten_AU
dc.titleDeeply Subwavelength Metasurface Resonators for Terahertz Wavefront Manipulationen_AU
dc.typeJournal articleen_AU
dcterms.accessRightsOpen Access
local.bibliographicCitation.issue21en_AU
local.bibliographicCitation.startpage1900736en_AU
local.contributor.affiliationLiu, Mingkai, College of Science, The Australian National Universityen_AU
local.contributor.affiliationYang, Quanlong, College of Science, The Australian National Universityen_AU
local.contributor.affiliationAoni, Rifat Ahmmed, College of Science, The Australian National Universityen_AU
local.contributor.affiliationRaj, Vidur, College of Science, The Australian National Universityen_AU
local.contributor.affiliationKomar, Andrei, College of Science, The Australian National Universityen_AU
local.contributor.affiliationHan, Jiaguang, Tianjin University and the Key Laboratory of Optoelectronics Information and Technologyen_AU
local.contributor.affiliationRahmani, Mohsen, College of Science, The Australian National Universityen_AU
local.contributor.affiliationHattori, Haroldo T., UNSWen_AU
local.contributor.affiliationNeshev, Dragomir, College of Science, The Australian National Universityen_AU
local.contributor.affiliationPowell, David A., School of Engineering and Information Technology, University of New South Walesen_AU
local.contributor.affiliationShadrivov, Ilya, College of Science, The Australian National Universityen_AU
local.contributor.authoremailu5037977@anu.edu.auen_AU
local.contributor.authoruidLiu, Mingkai, u5037977en_AU
local.contributor.authoruidYang, Quanlong, u1047745en_AU
local.contributor.authoruidAoni, Rifat Ahmmed, u6167858en_AU
local.contributor.authoruidRaj, Vidur, u5858523en_AU
local.contributor.authoruidKomar, Andrei, u5318466en_AU
local.contributor.authoruidRahmani, Mohsen, u1011372en_AU
local.contributor.authoruidNeshev, Dragomir, u4049045en_AU
local.contributor.authoruidShadrivov, Ilya, u3923606en_AU
local.description.notesImported from ARIES.en_AU
local.identifier.absfor020503 - Nonlinear Optics and Spectroscopyen_AU
local.identifier.absseo970102 - Expanding Knowledge in the Physical Sciencesen_AU
local.identifier.ariespublicationu3102795xPUB4564en_AU
local.identifier.citationvolume7en_AU
local.identifier.doi10.1002/adom.201900736en_AU
local.identifier.essn2195-1071en_AU
local.identifier.thomsonIDWOS:000480920000001
local.identifier.uidSubmittedByu3102795en_AU
local.publisher.urlhttps://www.wiley.com/en_AU
local.type.statusAccepted Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Deep_subwavelength_meta_units_for_terahertz_wave_controls__combined_.pdf
Size:
3.22 MB
Format:
Adobe Portable Document Format