The maximum flux of star-forming galaxies

dc.contributor.authorCrocker, Roland
dc.contributor.authorKrumholz, Mark
dc.contributor.authorThompson, Todd A.
dc.contributor.authorClutterbuck, Julie
dc.date.accessioned2019-10-15T01:44:16Z
dc.date.available2019-10-15T01:44:16Z
dc.date.issued2018
dc.date.updated2019-05-05T08:53:25Z
dc.description.abstractThe importance of radiation pressure feedback in galaxy formation has been extensively debated over the last decade. The regime of greatest uncertainty is in the most actively star-forming galaxies, where large dust columns can potentially produce a dust-reprocessed infrared radiation field with enough pressure to drive turbulence or eject material. Here, we derive the conditions under which a self-gravitating mixed gas-star disc can remain hydrostatic despite trapped radiation pressure. Consistently, taking into account the self-gravity of the medium, the star- and dust-to-gas ratios, and the effects of turbulent motions not driven by radiation, we show that galaxies can achieve a maximum Eddington-limited star formation rate per unit area Σ˙∗,crit∼103M⊙ pc−2 Myr−1, corresponding to a critical flux of F*,crit ∼ 1013 L⊙ kpc−2 similar to previous estimates; higher fluxes eject mass in bulk, halting further star formation. Conversely, we show that in galaxies below this limit, our 1D models imply simple vertical hydrostatic equilibrium and that radiation pressure is ineffective at driving turbulence or ejecting matter. Because the vast majority of star-forming galaxies lie below the maximum limit for typical dust-to-gas ratios, we conclude that infrared radiation pressure is likely unimportant for all but the most extreme systems on galaxy-wide scales. Thus, while radiation pressure does not explain the Kennicutt–Schmidt relation, it does impose an upper truncation on it. Our predicted truncation is in good agreement with the highest observed gas and star formation rate surface densities found both locally and at high redshift.en_AU
dc.description.sponsorshipMRK acknowledges support from the Australian Research Council’s Discovery Projects grant DP160100695. TAT is supported in part by National Science Foundation grant NSF #1516967 and National Aeronautics and Space Administration grant NASA 17-ATP17-0177.en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn0035-8711en_AU
dc.identifier.urihttp://hdl.handle.net/1885/176865
dc.language.isoen_AUen_AU
dc.provenancehttp://sherpa.ac.uk/romeo/issn/0035-8711/..."Publisher's version/PDF on Institutional repositories or Central repositories, with all rights reserved" from SHERPA/RoMEO site (as at 15/10/19). This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society © 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.en_AU
dc.publisherOxford University Pressen_AU
dc.relationhttp://purl.org/au-research/grants/arc/DP160100695en_AU
dc.rights© 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Societyen_AU
dc.sourceMonthly Notices of the Royal Astronomical Societyen_AU
dc.titleThe maximum flux of star-forming galaxiesen_AU
dc.typeJournal articleen_AU
dcterms.accessRightsOpen Access
local.bibliographicCitation.issue1en_AU
local.bibliographicCitation.lastpage94en_AU
local.bibliographicCitation.startpage81en_AU
local.contributor.affiliationCrocker, Roland, College of Science, ANUen_AU
local.contributor.affiliationKrumholz, Mark, College of Science, ANUen_AU
local.contributor.affiliationThompson, Todd A., Ohio State Universityen_AU
local.contributor.affiliationClutterbuck, Julie, Monash Universityen_AU
local.contributor.authoremailu5240609@anu.edu.auen_AU
local.contributor.authoruidCrocker, Roland, u5240609en_AU
local.contributor.authoruidKrumholz, Mark, u1000557en_AU
local.description.notesImported from ARIESen_AU
local.identifier.absfor020103 - Cosmology and Extragalactic Astronomyen_AU
local.identifier.absseo970102 - Expanding Knowledge in the Physical Sciencesen_AU
local.identifier.ariespublicationa383154xPUB10374en_AU
local.identifier.citationvolume478en_AU
local.identifier.doi10.1093/mnras/sty989en_AU
local.identifier.scopusID2-s2.0-85048515317
local.identifier.uidSubmittedBya383154en_AU
local.publisher.urlhttps://academic.oup.com/journals/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01_Crocker_The_maximum_flux_of_2018.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format