Obligate biotrophy features unraveled by the genomic analysis of rust fungi

Date

2011

Authors

Duplessis, Sebastien
Cuomo, Christina A
Lin, Yao-Cheng
Aerts, Andrea L.
Tisserant, Emilie
Veneault-Fourrey, Claire
Joly, David L.
Hacquard, Stéphane
Amselem, Joëlle
Cantarel, BrandiL.

Journal Title

Journal ISSN

Volume Title

Publisher

National Academy of Sciences (USA)

Abstract

Rust fungi are some of the most devastating pathogens of crop plants. They are obligate biotrophs,which extract nutrients only from living plant tissues and cannot grow apart from their hosts. Their lifestyle has slowed the dissection of molecular mechanisms underlying host invasion and avoidance or suppression of plant innate immunity. We sequenced the 101-Mb genome of Melampsora laricipopulina, the causal agent of poplar leaf rust, and the 89-Mb genome of Puccinia graminis f. sp. tritici, the causal agent ofwheat and barley stem rust. We then compared the 16,399 predicted proteins of M. larici-populina with the 17,773 predicted proteins of P. graminis f. sp tritici. Genomic features related to their obligate biotrophic lifestyle include expanded lineage-specific gene families, a large repertoire of effector-like small secreted proteins, impaired nitrogen and sulfur assimilation pathways, and expanded families of amino acid and oligopeptide membrane transporters. The dramatic up-regulation of transcripts coding for small secreted proteins, secreted hydrolytic enzymes, and transporters in planta suggests that they play a role in host infection and nutrient acquisition. Some of these genomic hallmarks are mirrored in the genomes of other microbial eukaryotes that have independently evolved to infect plants, indicating convergent adaptation to a biotrophic existence inside plant cells.

Description

Keywords

Keywords: amino acid; hydrolase; nitrogen; oligopeptide; sulfur; vegetable protein; amino acid sequence; article; barley; controlled study; gene expression; gene sequence; genetic analysis; genomics; hydrolysis; innate immunity; Melampsora laricipopulina; multigene Basidiomycete; Comparative genomics; Evolution; Plant pathogen; Rust disease

Citation

Source

PNAS - Proceedings of the National Academy of Sciences of the United States of America

Type

Journal article

Book Title

Entity type

Access Statement

Open Access

License Rights

Restricted until