Semi-Markov models for sequence segmentation

dc.contributor.authorShi, Qinfeng
dc.contributor.authorAltun, Yasemin
dc.contributor.authorSmola, Alexander
dc.contributor.authorVishwanathan, S
dc.coverage.spatialPrague Czech Republic
dc.date.accessioned2015-12-10T22:12:31Z
dc.date.createdJune 28-30 2007
dc.date.issued2007
dc.date.updated2016-02-24T11:43:33Z
dc.description.abstractIn this paper, we study the problem of automatically segmenting written text into paragraphs. This is inherently a sequence labeling problem, however, previous approaches ignore this dependency. We propose a novel approach for automatic paragraph segmentation, namely training Semi-Markov models discriminatively using a Max-Margin method. This method allows us to model the sequential nature of the problem and to incorporate features of a whole paragraph, such as paragraph coherence which cannot be used in previous models. Experimental evaluation on four text corpora shows improvement over the previous state-of-the art method on this task.
dc.identifier.urihttp://hdl.handle.net/1885/49701
dc.publisherOmniPress
dc.relation.ispartofseriesJoint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL 2007)
dc.sourceProceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL 2007)
dc.source.urihttp://www.aclweb.org/anthology-new/D/D07/D07-1.pdf
dc.subjectKeywords: Experimental evaluation; Paragraph segmentation; Semi Markov model; Sequence Labeling; State of the art; Text corpora; Written texts; Computational linguistics; Markov processes; Natural language processing systems
dc.titleSemi-Markov models for sequence segmentation
dc.typeConference paper
local.bibliographicCitation.lastpage648
local.bibliographicCitation.startpage640
local.contributor.affiliationShi, Qinfeng, College of Engineering and Computer Science, ANU
local.contributor.affiliationAltun, Yasemin, Toyota Technological Institute at Chicago
local.contributor.affiliationSmola, Alexander, College of Engineering and Computer Science, ANU
local.contributor.affiliationVishwanathan, S, College of Engineering and Computer Science, ANU
local.contributor.authoremailrepository.admin@anu.edu.au
local.contributor.authoruidShi, Qinfeng, u4265690
local.contributor.authoruidSmola, Alexander, u4039398
local.contributor.authoruidVishwanathan, S, a204054
local.description.embargo2037-12-31
local.description.notesImported from ARIES
local.description.refereedYes
local.identifier.absfor080109 - Pattern Recognition and Data Mining
local.identifier.ariespublicationu8803936xPUB190
local.identifier.scopusID2-s2.0-78649917412
local.identifier.uidSubmittedByu8803936
local.type.statusPublished Version

Downloads

Original bundle
Now showing 1 - 3 of 3
No Thumbnail Available
Name:
01_Shi_Semi-Markov_models_for_2007.pdf
Size:
806.88 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
02_Shi_Semi-Markov_models_for_2007.pdf
Size:
29.43 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
03_Shi_Semi-Markov_models_for_2007.pdf
Size:
355.14 KB
Format:
Adobe Portable Document Format