Nonepitaxial Gold-Tipped ZnSe Hybrid Nanorods for Efficient Photocatalytic Hydrogen Production

Date

2019

Authors

Chen, Wei
Li, Xiaojie
Wang, Fei
Javaid, Shaghraf
Pang, Yingping
Chen, Jiayi
Yin, Zongyou
Wang, Shaobin
Li, Yunguo
Jia, Guohua

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley-VCH Verlag GMBH

Abstract

For the first time, colloidal gold (Au)–ZnSe hybrid nanorods (NRs) with controlled size and location of Au domains are synthesized and used for hydrogen production by photocatalytic water splitting. Au tips are found to grow on the apices of ZnSe NRs nonepitaxially to form an interface with no preference of orientation between Au(111) and ZnSe(001). Density functional theory calculations reveal that the Au tips on ZnSe hybrid NRs gain enhanced adsorption of H compared to pristine Au, which favors the hydrogen evolution reaction. Photocatalytic tests reveal that the Au tips on ZnSe NRs effectively enhance the photocatalytic performance in hydrogen generation, in which the single Au-tipped ZnSe hybrid NRs show the highest photocatalytic hydrogen production rate of 437.8 µmol h−1 g−1 in comparison with a rate of 51.5 µmol h−1 g−1 for pristine ZnSe NRs. An apparent quantum efficiency of 1.3% for hydrogen evolution reaction for single Au-tipped ZnSe hybrid NRs is obtained, showing the potential application of this type of cadmium (Cd)-free metal–semiconductor hybrid nanoparticles (NPs) in solar hydrogen production. This work opens an avenue toward Cd-free hybrid NP-based photocatalysis for clean fuel production.

Description

Keywords

Citation

Source

Small

Type

Journal article

Book Title

Entity type

Access Statement

Open Access

License Rights

Restricted until

Downloads

Back to topicon-arrow-up-solid
 
APRU
IARU
 
edX
Group of Eight Member

Acknowledgement of Country

The Australian National University acknowledges, celebrates and pays our respects to the Ngunnawal and Ngambri people of the Canberra region and to all First Nations Australians on whose traditional lands we meet and work, and whose cultures are among the oldest continuing cultures in human history.


Contact ANUCopyrightDisclaimerPrivacyFreedom of Information

+61 2 6125 5111 The Australian National University, Canberra

TEQSA Provider ID: PRV12002 (Australian University) CRICOS Provider Code: 00120C ABN: 52 234 063 906