Numerical algorithms for constrained maximum likelihood estimation

dc.contributor.authorLi, Zheng Feng
dc.contributor.authorOsborne, Michael
dc.contributor.authorPrvan, Tania
dc.date.accessioned2015-12-13T23:05:51Z
dc.date.available2015-12-13T23:05:51Z
dc.date.issued2003
dc.date.updated2015-12-12T08:02:34Z
dc.description.abstractThis paper describes a SQP-type algorithm for solving a constrained maximum likelihood estimation problem that incorporates a number of novel features. We call it MLESOL. MLESOL maintains the use of an estimate of the Fisher information matrix to the Hessian of the negative log-likelihood but also encompasses a secant approximation S to the second-order part of the augmented Lagrangian function along with tests for when to use this information. The local quadratic model used has a form something like that of Tapia's SQP augmented scale BFGS secant method but explores the additional structure of the objective function. The step choice algorithm is based on minimising a local quadratic model subject to the linearised constraints and an elliptical trust region centred at the current approximate minimiser. This is accomplished using the Byrd and Omojokun trust region approach, together with a special module for assessing the quality of the step thus computed. The numerical performance of MLESOL is studied by means of an example involving the estimation of a mixture density.
dc.identifier.issn1446-1811
dc.identifier.urihttp://hdl.handle.net/1885/85742
dc.publisherAustralian Mathematical Society
dc.sourceAustralian and New Zealand Industrial and Applied Mathematics
dc.titleNumerical algorithms for constrained maximum likelihood estimation
dc.typeJournal article
local.bibliographicCitation.lastpage114
local.bibliographicCitation.startpage91
local.contributor.affiliationLi, Zheng Feng, College of Medicine, Biology and Environment, ANU
local.contributor.affiliationOsborne, Michael, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationPrvan, Tania, College of Physical and Mathematical Sciences, ANU
local.contributor.authoremailu4592503@anu.edu.au
local.contributor.authoruidLi, Zheng Feng, u4024853
local.contributor.authoruidOsborne, Michael, u4592503
local.contributor.authoruidPrvan, Tania, u1552886
local.description.notesImported from ARIES
local.description.refereedYes
local.identifier.absfor010401 - Applied Statistics
local.identifier.ariespublicationMigratedxPub14376
local.identifier.citationvolume45
local.identifier.doi10.1017/S1446181100013171
local.identifier.scopusID2-s2.0-33747369848
local.identifier.uidSubmittedByMigrated
local.type.statusPublished Version

Downloads