Bar Code Recognition in Highly Distorted and Low Resolution Images

dc.contributor.authorShams, Ramtin
dc.contributor.authorSadeghi, Parastoo
dc.coverage.spatialHonolulu Hawaii
dc.date.accessioned2015-12-08T22:46:24Z
dc.date.createdApril 15-20 2007
dc.date.issued2007
dc.date.updated2015-12-08T11:01:08Z
dc.description.abstractIn this paper, we present a novel approach to detection of one dimensional bar code images. Our algorithm is particularly designed to recognize bar codes, where the image may be of low resolution, low quality or suffer from substantial blurring, de-focusing, non-uniform illumination, noise and color saturation. The algoritnni is accurate, fast, scalable and can be easily adjusted to search for a valid result within a specified time constraint. Our algorithm is particulary useful for real-time recognition of bar codes in portable hand-held devices with limited processing capability, such as mobile phones.
dc.identifier.isbn1424407281
dc.identifier.urihttp://hdl.handle.net/1885/38127
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE Inc)
dc.relation.ispartofseriesIEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2007)
dc.sourceProceedings of the 2007 IEEE International Conference on Acoustics, Speech, and Signal Processing
dc.subjectKeywords: Constraint theory; Feature extraction; Image quality; Image reconstruction; Image resolution; Image segmentation; Color saturation; Peak detection; Bar codes Bar codes; Feature extraction; Image segmentation; Pattern recognition; Peak detection
dc.titleBar Code Recognition in Highly Distorted and Low Resolution Images
dc.typeConference paper
local.bibliographicCitation.lastpage740
local.bibliographicCitation.startpage737
local.contributor.affiliationShams, Ramtin, College of Engineering and Computer Science, ANU
local.contributor.affiliationSadeghi, Parastoo, College of Engineering and Computer Science, ANU
local.contributor.authoremailu4267276@anu.edu.au
local.contributor.authoruidShams, Ramtin, u4374676
local.contributor.authoruidSadeghi, Parastoo, u4267276
local.description.embargo2037-12-31
local.description.notesImported from ARIES
local.description.refereedYes
local.identifier.absfor080104 - Computer Vision
local.identifier.ariespublicationu3357961xPUB158
local.identifier.doi10.1109/ICASSP.2007.366013
local.identifier.scopusID2-s2.0-34547514839
local.identifier.uidSubmittedByu3357961
local.type.statusPublished Version

Downloads

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
01_Shams_Bar_Code_Recognition_in_Highly_2007.pdf
Size:
239.25 KB
Format:
Adobe Portable Document Format