Recursive function definition for types with binders

dc.contributor.authorNorrish, Michael
dc.date.accessioned2015-12-13T23:11:28Z
dc.date.issued2004
dc.date.updated2015-12-12T08:27:48Z
dc.description.abstractThis work describes the proof and uses of a theorem allowing definition of recursive functions over the type of λ-calculus terms, where terms with bound variables are identified up to α-equivalence. The theorem embodies what is effectively a principle o
dc.identifier.isbn3540230173
dc.identifier.urihttp://hdl.handle.net/1885/87609
dc.publisherSpringer
dc.relation.ispartofTheorem Proving in Higher Order Logics: 17th international conference, TPHOLs 2004
dc.relation.isversionof1st Edition
dc.titleRecursive function definition for types with binders
dc.typeBook chapter
local.bibliographicCitation.lastpage256
local.bibliographicCitation.placeofpublicationBerlin, Germany
local.bibliographicCitation.startpage241
local.contributor.affiliationNorrish, Michael, College of Engineering and Computer Science, ANU
local.contributor.authoremailu4087502@anu.edu.au
local.contributor.authoruidNorrish, Michael, u4087502
local.description.embargo2037-12-31
local.description.notesImported from ARIES
local.description.refereedYes
local.identifier.absfor080203 - Computational Logic and Formal Languages
local.identifier.ariespublicationMigratedxPub16966
local.identifier.scopusID2-s2.0-35048868796
local.identifier.uidSubmittedByMigrated
local.type.statusPublished Version

Downloads

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
01_Norrish_Recursive_function_definition_2004.pdf
Size:
130.29 KB
Format:
Adobe Portable Document Format