Redox potential and the response of cardiac ryanodine receptors to CLIC-2, a member of the glutathione S-transferase structural family

Date

2008

Authors

Jalilian , Chris
Gallant, Esther
Board, Philip
Dulhunty, Angela

Journal Title

Journal ISSN

Volume Title

Publisher

Mary Ann Liebert Inc.

Abstract

The type 2 chloride intracellular channel, CLIC-2, is a member of the glutathione S-transferase structural family and a suppressor of cardiac ryanodine receptor (RyR2) Ca2+ channels located in the membrane of the sarcoplasmic reticulum (SR). Modulators of RyR2 activity can alter cardiac contraction. Since both CLIC-2 and RyR2 are modified by redox reactions, we speculated that the action of CLIC-2 on RyR2 may depend on redox potential. We used a GSH:GSSG buffer system to produce mild changes in redox potential to influence redox sensors in RyR2 and CLIC-2. RyR2 activity was modified only when both luminal and cytoplasmic solutions contained the GSH:GSSG buffer and the effects were reversed by removing the buffer from one of the solutions. Channel activity increased with an oxidizing redox potential and decreased when the potential was more reducing. Addition of cytoplasmic CLIC-2 inhibited RyR2 with oxidizing redox potentials, but activated RyR2 under reducing conditions. The results suggested that both RyR2 and CLIC-2 contain redox sensors. Since cardiac ischemia involves a destructive Ca2+ overload that is partly due to oxidation-induced increase in RyR2 activity, we speculate that the properties of CLIC-2 place it in an ideal position to limit ischemia-induced cellular damage in cardiac muscle.

Description

Keywords

Keywords: buffer; calcium channel; calcium ion; chloride channel; glutathione transferase; ryanodine receptor 2; article; calcium cell level; cell damage; cytoplasm; heart contraction; heart muscle; heart muscle ischemia; human; human cell; oxidation reduction reac

Citation

Source

Antioxidants & redox signaling

Type

Journal article

Book Title

Entity type

Access Statement

License Rights

Restricted until

2037-12-31