Fast Bayesian intensity estimation for the permanental process
dc.contributor.author | Walder, Christian | |
dc.contributor.author | Bishop, Adrian | |
dc.coverage.spatial | Sydney, Australia | |
dc.date.accessioned | 2024-05-09T00:54:18Z | |
dc.date.created | August 6-11 2017 | |
dc.date.issued | 2017 | |
dc.date.updated | 2023-01-08T07:17:36Z | |
dc.description.abstract | The Cox process is a stochastic process which generalises the Poisson process by letting the underlying intensity function itself be a stochastic process. In this paper we present a fast Bayesian inference scheme for the permanental process, a Cox process under which the square root of the intensity is a Gaussian process. In particular we exploit connections with reproducing kernel Hilbert spaces, to derive efficient approximate Bayesian inference algorithms based on the Laplace approximation to the predictive distribu-tion and marginal likelihood. We obtain a simple algorithm which we apply to toy and real-world problems, obtaining orders of magnitude speed improvements over previous work. | en_AU |
dc.format.mimetype | application/pdf | en_AU |
dc.identifier.isbn | 9781510855144 | en_AU |
dc.identifier.uri | http://hdl.handle.net/1885/317376 | |
dc.language.iso | en_AU | en_AU |
dc.publisher | International Machine Learning Society | en_AU |
dc.relation | http://purl.org/au-research/grants/arc/DE120102873 | en_AU |
dc.relation.ispartofseries | 34th International Conference on Machine Learning, ICML 2017 | en_AU |
dc.rights | © Author(s) 2017 | en_AU |
dc.source | Proceedings of the 34th International Conference on Machine Learning, ICML 2017 | en_AU |
dc.source.uri | https://proceedings.mlr.press/v70/walder17a/walder17a.pdf | en_AU |
dc.title | Fast Bayesian intensity estimation for the permanental process | en_AU |
dc.type | Conference paper | en_AU |
dcterms.accessRights | Free Access via publisher website | en_AU |
local.bibliographicCitation.lastpage | 10 | en_AU |
local.bibliographicCitation.startpage | 1 | en_AU |
local.contributor.affiliation | Walder, Christian, College of Engineering, Computing and Cybernetics, ANU | en_AU |
local.contributor.affiliation | Bishop, Adrian, College of Engineering, Computing and Cybernetics, ANU | en_AU |
local.contributor.authoremail | repository.admin@anu.edu.au | en_AU |
local.contributor.authoruid | Walder, Christian, u1018264 | en_AU |
local.contributor.authoruid | Bishop, Adrian, u4884680 | en_AU |
local.description.embargo | 2099-12-31 | |
local.description.notes | Imported from ARIES | en_AU |
local.description.refereed | Yes | |
local.identifier.absfor | 400104 - Avionics | en_AU |
local.identifier.ariespublication | u4485658xPUB433 | en_AU |
local.identifier.scopusID | 2-s2.0-85048491312 | |
local.identifier.uidSubmittedBy | u4485658 | en_AU |
local.publisher.url | https://proceedings.mlr.press/v70/walder17a/walder17a.pdf | en_AU |
local.type.status | Published Version | en_AU |
Downloads
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Fast Bayesian Intensity Estimation for the Permanental Process.pdf
- Size:
- 2.63 MB
- Format:
- Adobe Portable Document Format
- Description: