Fast Bayesian intensity estimation for the permanental process

dc.contributor.authorWalder, Christian
dc.contributor.authorBishop, Adrian
dc.coverage.spatialSydney, Australia
dc.date.accessioned2024-05-09T00:54:18Z
dc.date.createdAugust 6-11 2017
dc.date.issued2017
dc.date.updated2023-01-08T07:17:36Z
dc.description.abstractThe Cox process is a stochastic process which generalises the Poisson process by letting the underlying intensity function itself be a stochastic process. In this paper we present a fast Bayesian inference scheme for the permanental process, a Cox process under which the square root of the intensity is a Gaussian process. In particular we exploit connections with reproducing kernel Hilbert spaces, to derive efficient approximate Bayesian inference algorithms based on the Laplace approximation to the predictive distribu-tion and marginal likelihood. We obtain a simple algorithm which we apply to toy and real-world problems, obtaining orders of magnitude speed improvements over previous work.en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.isbn9781510855144en_AU
dc.identifier.urihttp://hdl.handle.net/1885/317376
dc.language.isoen_AUen_AU
dc.publisherInternational Machine Learning Societyen_AU
dc.relationhttp://purl.org/au-research/grants/arc/DE120102873en_AU
dc.relation.ispartofseries34th International Conference on Machine Learning, ICML 2017en_AU
dc.rights© Author(s) 2017en_AU
dc.sourceProceedings of the 34th International Conference on Machine Learning, ICML 2017en_AU
dc.source.urihttps://proceedings.mlr.press/v70/walder17a/walder17a.pdfen_AU
dc.titleFast Bayesian intensity estimation for the permanental processen_AU
dc.typeConference paperen_AU
dcterms.accessRightsFree Access via publisher websiteen_AU
local.bibliographicCitation.lastpage10en_AU
local.bibliographicCitation.startpage1en_AU
local.contributor.affiliationWalder, Christian, College of Engineering, Computing and Cybernetics, ANUen_AU
local.contributor.affiliationBishop, Adrian, College of Engineering, Computing and Cybernetics, ANUen_AU
local.contributor.authoremailrepository.admin@anu.edu.auen_AU
local.contributor.authoruidWalder, Christian, u1018264en_AU
local.contributor.authoruidBishop, Adrian, u4884680en_AU
local.description.embargo2099-12-31
local.description.notesImported from ARIESen_AU
local.description.refereedYes
local.identifier.absfor400104 - Avionicsen_AU
local.identifier.ariespublicationu4485658xPUB433en_AU
local.identifier.scopusID2-s2.0-85048491312
local.identifier.uidSubmittedByu4485658en_AU
local.publisher.urlhttps://proceedings.mlr.press/v70/walder17a/walder17a.pdfen_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Fast Bayesian Intensity Estimation for the Permanental Process.pdf
Size:
2.63 MB
Format:
Adobe Portable Document Format
Description: