Direct-to-Reverberant Energy Ratio Estimation Using a First-Order Microphone
Date
2017
Authors
Chen, Hanchi
Abhayapala, Thushara
Samarasinghe, Prasanga
Zhang, Wen
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Abstract
The direct-to-reverberant ratio (DRR) is an important characterization of a reverberant environment. This paper presents a novel blind DRR estimation method based on the coherence function between the sound pressure and particle velocity at a point. First, a general expression of coherence function and DRR is derived in the spherical harmonic domain, without imposing assumptions on the reverberation. In this paper, DRR is expressed in terms of the coherence function as well as two parameters that are related to statistical characteristics of the reverberant environment. Then, a method to estimate the values of these two parameters using a microphone system capable of capturing first-order spherical harmonics is proposed, under three assumptions which are more realistic than the diffuse field model. Furthermore, a theoretical analysis on the use of plane wave model for direct path signal and its effect on DRR estimation is presented, and a rule of thumb is provided for determining whether the point source model should be used for the direct path signal. Finally, the ACE challenge dataset is used to validate the proposed DRR estimation method. The results show that the average full band estimation error is within 2 dB, with no clear trend of bias.
Description
Keywords
Citation
Collections
Source
IEEE/ACM Transactions on Audio, Speech, and Language Processing
Type
Journal article
Book Title
Entity type
Access Statement
Open Access
License Rights
Restricted until
Downloads
File
Description