We are experiencing issues opening hdl.handle.net links on ANU campus. If you are experiencing issues, please contact the repository team repository.admin@anu.edu.au for assistance.
 

Effects of size and surface on the auxetic behaviour of monolayer graphene kirigami

Date

2016-10-12

Authors

Cai, Kun
Luo, Jing
Ling, Yiru
Wan, Jing
Qin, Qing-Hua

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Publishing Group

Abstract

Graphene is an active element used in the design of nano-electro-mechanical systems (NEMS) owing to its excellent in-plane physical properties on mechanical, electric and thermal aspects. Considering a component requiring negative Poisson's ratio in NEMS, a graphene kirigami (GK) containing periodic re-entrant honeycombs is a natural option. This study demonstrates that a GK with specific auxetic property can be obtained by adjusting the sizes of its honeycombs. Using molecular dynamics experiments, the size effects on the auxetic behaviour of GK are investigated. In some cases, the auxetic difference between the hydrogenated GK and continuum kirigami (CK) is negligible, in which the results from macro CK can be used to predict auxetic behaviour of nano kirigami. Surface effect of GK is demonstrated from two aspects. One is to identify the difference of mechanical responses between the pure carbon GK and the hydrogenated GK at same geometry and loading condition. Another is from the difference of mechanical responses between the GK model and the CK model under same loading condition and geometric configuration. Generally, surface energy makes the GK possess higher variation of auxetic behaviour. It also results in higher modulus for the GK as comparing with that of the CK.

Description

Keywords

graphene kirigami (GK), nano-electro-mechanical systems (NEMS)

Citation

Source

Scientific reports

Type

Journal article

Book Title

Entity type

Access Statement

Open Access

License Rights

Restricted until

Back to topicon-arrow-up-solid
 
APRU
IARU
 
edX
Group of Eight Member

Acknowledgement of Country

The Australian National University acknowledges, celebrates and pays our respects to the Ngunnawal and Ngambri people of the Canberra region and to all First Nations Australians on whose traditional lands we meet and work, and whose cultures are among the oldest continuing cultures in human history.


Contact ANUCopyrightDisclaimerPrivacyFreedom of Information

+61 2 6125 5111 The Australian National University, Canberra

TEQSA Provider ID: PRV12002 (Australian University) CRICOS Provider Code: 00120C ABN: 52 234 063 906