Electric Field- And Current-Induced Electroforming Modes in NbOx

Date

Authors

Nandi, Sanjoy
Nath, Shimul Kanti
El-Helou, Assaad E.
Li, Shuai
Ratcliff, Tom
Uenuma, Mutsunori
Raad, Peter E.
Elliman, Rob

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society

Abstract

Electroforming is used to initiate the memristive response in metal/oxide/metal devices by creating a filamentary conduction path in the oxide film. Here, we use a simple photoresist-based detection technique to map the spatial distribution of conductive filaments formed in Nb/NbOx/Pt devices, and correlate these with current-voltage characteristics and in situ thermoreflectance measurements to identify distinct modes of electroforming in low- and high-conductivity NbOx films. In low-conductivity films, the filaments are randomly distributed within the oxide film, consistent with a field-induced weakest-link mechanism, while in high-conductivity films they are concentrated in the center of the film. In the latter case, the current-voltage characteristics and in situ thermoreflectance imaging show that electroforming is associated with current bifurcation into regions of low and high current density. This is supported by finite element modeling of the current distribution and shown to be consistent with predictions of a simple core-shell model of the current distribution. These results clearly demonstrate two distinct modes of electroforming in the same material system and show that the dominant mode depends on the conductivity of the film, with field-induced electroforming dominant in low-conductivity films and current bifurcation-induced electroforming dominant in high-conductivity films.

Description

Citation

Source

ACS Applied Materials and Interfaces

Book Title

Entity type

Access Statement

Open Access

License Rights

Restricted until