A modal characterization theorem for a probabilistic fuzzy description logic

dc.contributor.authorWild, Paul
dc.contributor.authorSchroeder, Lutz
dc.contributor.authorPattinson, Dirk
dc.contributor.authorKoenig, Barbara
dc.contributor.editorKraus, S
dc.coverage.spatialMacau China
dc.date.accessioned2024-01-18T00:00:59Z
dc.date.createdAug 10-16 2019
dc.date.issued2019
dc.date.updated2022-10-02T07:16:50Z
dc.description.abstractThe fuzzy modality probably is interpreted over probabilistic type spaces by taking expected truth values. The arising probabilistic fuzzy description logic is invariant under probabilistic bisimilarity; more informatively, it is non-expansive wrt. a suitable notion of behavioural distance. In the present paper, we provide a characterization of the expressive power of this logic based on this observation: We prove a probabilistic analogue of the classical van Benthem theorem, which states that modal logic is precisely the bisimulation-invariant fragment of first-order logic. Specifically, we show that every formula in probabilistic fuzzy first-order logic that is non-expansive wrt. behavioural distance can be approximated by concepts of bounded rank in probabilistic fuzzy description logicen_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.isbn9780999241141en_AU
dc.identifier.urihttp://hdl.handle.net/1885/311594
dc.language.isoen_AUen_AU
dc.publisherInternational Joint Conferences on Artificial Intelligenceen_AU
dc.relation.ispartofseries28th International Joint Conference on Artificial Intelligence, IJCAI 2019en_AU
dc.rights© 2019 International Joint Conferences on Artificial Intelligenceen_AU
dc.sourceProceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019en_AU
dc.source.urihttps://www.ijcai.org/proceedings/2019/0263.pdfen_AU
dc.titleA modal characterization theorem for a probabilistic fuzzy description logicen_AU
dc.typeConference paperen_AU
dcterms.accessRightsFree Access via publisher websiteen_AU
local.bibliographicCitation.lastpage1906en_AU
local.bibliographicCitation.startpage1900en_AU
local.contributor.affiliationWild, Paul, Friedrich-Alexander-Universitaet Erlangen-Nuernbergen_AU
local.contributor.affiliationSchroeder, Lutz, Friedrich-Alexander-Universitaet Erlangen-Nuernbergen_AU
local.contributor.affiliationPattinson, Dirk, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationKoenig, Barbara, Universitaet Duisburg-Essenen_AU
local.contributor.authoremailu4762643@anu.edu.auen_AU
local.contributor.authoruidPattinson, Dirk, u4762643en_AU
local.description.embargo2099-12-31
local.description.notesImported from ARIESen_AU
local.description.refereedYes
local.identifier.absfor461303 - Computational logic and formal languagesen_AU
local.identifier.ariespublicationa383154xPUB11885en_AU
local.identifier.doi10.24963/ijcai.2019/263en_AU
local.identifier.uidSubmittedBya383154en_AU
local.publisher.urlhttps://www.ijcai.org/proceedings/2019/0263.pdfen_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
0263.pdf
Size:
151.77 KB
Format:
Adobe Portable Document Format
Description: