We are experiencing issues opening hdl.handle.net links on ANU campus. If you are experiencing issues, please contact the repository team repository.admin@anu.edu.au for assistance.
 

Fast-timing measurements in the ground-state band of 114Pd

Date

2019-10-11

Authors

Gamba, E.R.
Bruce, A M
Lalkovski, S.
Rudigier, M.
Bottoni, Simone
Carpenter, M P
Zhu, S.
Anderson, John T
Ayangeakaa, A. D.
Berry, T A

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society

Abstract

Using a hybrid Gammasphere array coupled to 25 LaBr3(Ce) detectors, the lifetimes of the first three levels of the yrast band in 114Pd, populated via 252Cf decay, have been measured. The measured lifetimes are τ2+ = 103(10) ps, τ4+ = 22(13) ps, and τ6+ 10 ps for the 2+ 1 , 4+ 1 , and 6+ 1 levels, respectively. Palladium-114 was predicted to be the most deformed isotope of its isotopic chain, and spectroscopic studies have suggested it might also be a candidate nucleus for low-spin stable triaxiality. From the lifetimes measured in this work, reduced transition probabilities B(E2; J → J − 2) are calculated and compared with interacting boson model, projected shell model, and collective model calculations from the literature. The experimental ratio RB(E2) = B(E2; 4+ 1 → 2+ 1 )/B(E2; 2+ 1 → 0+ 1 ) = 0.80(42) is measured for the first time in 114Pd and compared with the known values RB(E2) in the palladium isotopic chain: the systematics suggest that, for N = 68, a transition from γ -unstable to a more rigid γ -deformed nuclear shape occurs.

Description

Keywords

collective levels, nuclear structure and decays, lifetimes and widths, quasiparticles and collective excitations

Citation

Source

Physical Review C: Nuclear Physics

Type

Journal article

Book Title

Entity type

Access Statement

Open Access

License Rights

Restricted until

Back to topicon-arrow-up-solid
 
APRU
IARU
 
edX
Group of Eight Member

Acknowledgement of Country

The Australian National University acknowledges, celebrates and pays our respects to the Ngunnawal and Ngambri people of the Canberra region and to all First Nations Australians on whose traditional lands we meet and work, and whose cultures are among the oldest continuing cultures in human history.


Contact ANUCopyrightDisclaimerPrivacyFreedom of Information

+61 2 6125 5111 The Australian National University, Canberra

TEQSA Provider ID: PRV12002 (Australian University) CRICOS Provider Code: 00120C ABN: 52 234 063 906