Quantum Feedback Networks: Hamiltonian Formulation
Date
2009
Authors
Gough, John
James, Matthew
Journal Title
Journal ISSN
Volume Title
Publisher
Harwood Academic Publishers
Abstract
A quantum network is an open system consisting of several component Markovian input-output subsystems interconnected by boson field channels carrying quantum stochastic signals. Generalizing the work of Chebotarev and Gregoratti, we formulate the model description by prescribing a candidate Hamiltonian for the network including details of the component systems, the field channels, their interconnections, interactions and any time delays arising from the geometry of the network. (We show that the candidate is a symmetric operator and proceed modulo the proof of self- adjointness.) The model is non-Markovian for finite time delays, but in the limit where these delays vanish we recover a Markov model and thereby deduce the rules for introducing feedback into arbitrary quantum networks. The type of feedback considered includes that mediated by the use of beam splitters. We are therefore able to give a system-theoretic approach to introducing connections between quantum mechanical state-based input-output systems, and give a unifying treatment using non-commutative fractional linear, or Möbius, transformations.
Description
Keywords
Citation
Collections
Source
Communications in Mathematical Physics
Type
Journal article
Book Title
Entity type
Access Statement
License Rights
Restricted until
2037-12-31
Downloads
File
Description