We are experiencing issues opening hdl.handle.net links on ANU campus. If you are experiencing issues, please contact the repository team repository.admin@anu.edu.au for assistance.
 

Coherent feedback control of linear quantum optical systems via squeezing and phase shift

Date

2012

Authors

Zhang, Guofeng
Lee, H.W. (Joseph)
Huang, Bo
Zhang, Hu

Journal Title

Journal ISSN

Volume Title

Publisher

Society for Industrial and Applied Mathematics

Abstract

The purpose of this paper is to present a theoretic and numerical study of utilizing squeezing and phase shift in coherent feedback control of linear quantum optical systems. A quadrature representation with built-in phase shifters is proposed for such systems. Fundamental structural characterizations of linear quantum optical systems are derived in terms of the new quadrature representation. These results reveal considerable insights into the issue of the physical realizability of such quantum systems. The problem of coherent quantum linear quadratic Gaussian (LQG) feedback control studied in H. I. Nurdin, M. R. James, and I. R. Petersen, Automatica, IFAC, 45 (2009), pp. 1837-1846; G. Zhang and M. R. James, IEEE Trans. Automat. Control, 56 (2011), pp. 1535-1550 is reinvestigated in depth. First, the optimization methods in these papers are extended to a multistep optimization algorithm which utilizes ideal squeezers. Second, a two-stage optimization approach is proposed on the basis of controller parametrization. Numerical studies show that closed-loop systems designed via the second approach may offer LQG control performance even better than that when the closed-loop systems are in the vacuum state. When ideal squeezers in a closed-loop system are replaced by (more realistic) degenerate parametric amplifiers, a sufficient condition is derived for the asymptotic stability of the resultant new closed-loop system; the issue of performance convergence is also discussed in the LQG control setting.

Description

Keywords

Keywords: Controller parametrization; Heisenberg's uncertainty; Linear quadratic Gaussian; Linear quadratic Gaussian control; LQG control; Multi-step; Numerical studies; Optimization algorithms; Optimization method; Physical realizability; Quantum optical systems; Heisenberg's uncertainty sprinciple; Linear quadratic Gaussian control; Optimization; Phase shift; Quantum optics; Squeezing

Citation

Source

SIAM Journal on Control and Optimization

Type

Journal article

Book Title

Entity type

Access Statement

License Rights

Restricted until

2037-12-31
Back to topicon-arrow-up-solid
 
APRU
IARU
 
edX
Group of Eight Member

Acknowledgement of Country

The Australian National University acknowledges, celebrates and pays our respects to the Ngunnawal and Ngambri people of the Canberra region and to all First Nations Australians on whose traditional lands we meet and work, and whose cultures are among the oldest continuing cultures in human history.


Contact ANUCopyrightDisclaimerPrivacyFreedom of Information

+61 2 6125 5111 The Australian National University, Canberra

TEQSA Provider ID: PRV12002 (Australian University) CRICOS Provider Code: 00120C ABN: 52 234 063 906