The moment index of minima (II)

dc.contributor.authorDaley, Daryl
dc.contributor.authorGoldie, Charles M.
dc.date.accessioned2015-12-07T22:44:03Z
dc.date.issued2006
dc.date.updated2015-12-07T11:20:35Z
dc.description.abstractThe moment index κ(X) = sup {k: E(Xk) < ∞} of a nonnegative random variable X has the property that κ(min (X, Y)) ≥ κ(X) + κ(Y) for independent r.v.s X and Y. We characterize conditions under which equality holds for a given r.v. X and every indep
dc.identifier.issn0167-7152
dc.identifier.urihttp://hdl.handle.net/1885/25043
dc.publisherElsevier
dc.sourceStatistics and Probability Letters
dc.subjectKeywords: Exponential index; Moment index; Regular variation
dc.titleThe moment index of minima (II)
dc.typeJournal article
local.bibliographicCitation.lastpage837
local.bibliographicCitation.startpage831
local.contributor.affiliationDaley, Daryl, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationGoldie, Charles M., University of Sussex
local.contributor.authoremailu7000591@anu.edu.au
local.contributor.authoruidDaley, Daryl, u7000591
local.description.embargo2037-12-31
local.description.notesImported from ARIES
local.identifier.absfor010406 - Stochastic Analysis and Modelling
local.identifier.ariespublicationu3488905xPUB36
local.identifier.citationvolume76
local.identifier.doi10.1016/j.spl.2005.10.013
local.identifier.scopusID2-s2.0-33644895699
local.identifier.uidSubmittedByu3488905
local.type.statusPublished Version

Downloads

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
01_Daley_The_moment_index_of_minima_2006.pdf
Size:
175.73 KB
Format:
Adobe Portable Document Format