Markov uniqueness of degenerate elliptic operators
dc.contributor.author | Robinson, Derek | |
dc.contributor.author | Sikora, Adam | |
dc.date.accessioned | 2015-12-07T22:47:54Z | |
dc.date.issued | 2011 | |
dc.date.updated | 2015-12-07T11:55:17Z | |
dc.description.abstract | Let Ω be an open subset of Rd and HΩ - Σdi,j 1 ∂iij ∂j be a second-order partial differential operator on L2(Ω) with domain C∞0(Ω), where the coefficients cij ε W1,∞(Ω) are real symmetric and C = (cij) is a strictly positive-definite matrix | |
dc.identifier.issn | 0391-173X | |
dc.identifier.uri | http://hdl.handle.net/1885/26254 | |
dc.publisher | American Mathematical Society | |
dc.rights | Author/s retain copyright | en_AU |
dc.source | Annali Della Scuola Normale Superiore di Pisa | |
dc.title | Markov uniqueness of degenerate elliptic operators | |
dc.type | Journal article | |
dcterms.accessRights | Open Access | en_AU |
local.bibliographicCitation.lastpage | 710 | |
local.bibliographicCitation.startpage | 683 | |
local.contributor.affiliation | Robinson, Derek, College of Physical and Mathematical Sciences, ANU | |
local.contributor.affiliation | Sikora, Adam, Macquarie University | |
local.contributor.authoremail | u8200089@anu.edu.au | |
local.contributor.authoruid | Robinson, Derek, u8200089 | |
local.description.notes | Imported from ARIES | |
local.identifier.absfor | 010110 - Partial Differential Equations | |
local.identifier.absfor | 010108 - Operator Algebras and Functional Analysis | |
local.identifier.absseo | 970101 - Expanding Knowledge in the Mathematical Sciences | |
local.identifier.ariespublication | u4685828xPUB43 | |
local.identifier.citationvolume | X | |
local.identifier.scopusID | 2-s2.0-84863582393 | |
local.identifier.uidSubmittedBy | u4685828 | |
local.type.status | Published Version |
Downloads
Original bundle
1 - 1 of 1
Loading...
- Name:
- 01_Robinson_Markov_uniqueness_of_2011.pdf
- Size:
- 1.81 MB
- Format:
- Adobe Portable Document Format