Markov uniqueness of degenerate elliptic operators

dc.contributor.authorRobinson, Derek
dc.contributor.authorSikora, Adam
dc.date.accessioned2015-12-07T22:47:54Z
dc.date.issued2011
dc.date.updated2015-12-07T11:55:17Z
dc.description.abstractLet Ω be an open subset of Rd and HΩ - Σdi,j 1 ∂iij ∂j be a second-order partial differential operator on L2(Ω) with domain C∞0(Ω), where the coefficients cij ε W1,∞(Ω) are real symmetric and C = (cij) is a strictly positive-definite matrix
dc.identifier.issn0391-173X
dc.identifier.urihttp://hdl.handle.net/1885/26254
dc.publisherAmerican Mathematical Society
dc.rightsAuthor/s retain copyrighten_AU
dc.sourceAnnali Della Scuola Normale Superiore di Pisa
dc.titleMarkov uniqueness of degenerate elliptic operators
dc.typeJournal article
dcterms.accessRightsOpen Accessen_AU
local.bibliographicCitation.lastpage710
local.bibliographicCitation.startpage683
local.contributor.affiliationRobinson, Derek, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationSikora, Adam, Macquarie University
local.contributor.authoremailu8200089@anu.edu.au
local.contributor.authoruidRobinson, Derek, u8200089
local.description.notesImported from ARIES
local.identifier.absfor010110 - Partial Differential Equations
local.identifier.absfor010108 - Operator Algebras and Functional Analysis
local.identifier.absseo970101 - Expanding Knowledge in the Mathematical Sciences
local.identifier.ariespublicationu4685828xPUB43
local.identifier.citationvolumeX
local.identifier.scopusID2-s2.0-84863582393
local.identifier.uidSubmittedByu4685828
local.type.statusPublished Version

Downloads

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01_Robinson_Markov_uniqueness_of_2011.pdf
Size:
1.81 MB
Format:
Adobe Portable Document Format