Probabilistic Saturations and Alts Problem

dc.contributor.authorHauenstein, Jonathan D
dc.contributor.authorHelmer, Martin
dc.date.accessioned2024-03-03T22:46:23Z
dc.date.issued2020
dc.date.updated2022-10-16T07:25:41Z
dc.description.abstractlt's problem, formulated in 1923, is to count the number of four-bar linkages whose coupler curve interpolates nine general points in the plane. This problem can be phrased as counting the number of solutions to a system of polynomial equations which was first solved numerically using homotopy continuation by Wampler, Morgan, and Sommese in 1992. Since there is still not a proof that all solutions were obtained, we consider upper bounds for Alt's problem by counting the number of solutions outside of the base locus to a system arising as the general linear combination of polynomials. In particular, we derive effective symbolic and numeric methods for studying such systems using probabilistic saturations that can be employed using both finite fields and floating-point computations. We give bounds on the size of finite field required to achieve a desired level of certainty. These methods can also be applied to many other problems where similar systems arise such as computing the volumes of Newton-Okounkov bodies and computing intersection theoretic invariants including Euler characteristics, Chern classes, and Segre classesen_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn1058-6458en_AU
dc.identifier.urihttp://hdl.handle.net/1885/315641
dc.language.isoen_AUen_AU
dc.publisherA K Peters Ltd.en_AU
dc.rights© 2020 The authorsen_AU
dc.sourceExperimental Mathematicsen_AU
dc.subjectComputational algebraic geometryen_AU
dc.subjectmodular Grobner basisen_AU
dc.subjecthomotopy continuationen_AU
dc.subjectfour-bar linkageen_AU
dc.titleProbabilistic Saturations and Alts Problemen_AU
dc.typeJournal articleen_AU
local.bibliographicCitation.issue3en_AU
local.bibliographicCitation.lastpage987en_AU
local.bibliographicCitation.startpage975en_AU
local.contributor.affiliationHauenstein, Jonathan D, Universityof Notre Dameen_AU
local.contributor.affiliationHelmer, Martin, College of Science, ANUen_AU
local.contributor.authoremailu1079045@anu.edu.auen_AU
local.contributor.authoruidHelmer, Martin, u1079045en_AU
local.description.embargo2099-12-31
local.description.notesImported from ARIESen_AU
local.identifier.absfor490400 - Pure mathematicsen_AU
local.identifier.absfor490300 - Numerical and computational mathematicsen_AU
local.identifier.absfor490100 - Applied mathematicsen_AU
local.identifier.ariespublicationa383154xPUB11408en_AU
local.identifier.citationvolume31en_AU
local.identifier.doi10.1080/10586458.2020.1740835en_AU
local.identifier.scopusID2-s2.0-85082441637
local.identifier.thomsonIDWOS:000524205200001
local.identifier.uidSubmittedBya383154en_AU
local.publisher.urlhttps://www.tandfonline.com/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Probabilistic Saturations and Alt s Problem.pdf
Size:
1.45 MB
Format:
Adobe Portable Document Format
Description: