Apparent aeromagnetic wavelengths of the magnetic signals of ocean swell

Date

2004

Authors

Lilley, F. E. M.
Weitemeyer, Karen

Journal Title

Journal ISSN

Volume Title

Publisher

Brackett Secretariat

Abstract

Ocean swells have a magnetic signal, caused by the motional induction of sea water moving in the steady main magnetic field of Earth. To check the character of such signals at the sea surface, a magnetometer has been set free from a ship to float unrestricted on the surface of the ocean for periods of several days. The path of the floating magnetometer was tracked by satellite; this procedure enabled also the eventual recovery of the magnetometer by the ship. Superimposed upon a background of slow change of magnetic field, as the magnetometer drifted across different patterns of crustal magnetization, are high-frequency signals generated by the strong ocean swell present at the time. These wave-generated signals are typically up to 5 nT trough-to-peak, consistent with theory for their generation by ocean swells several metres trough-to-peak in height. The power spectra of the magnetic signals show a consistent peak at period 13 s, appropriate for the known characteristics of ocean swell in the area. The power spectra then exhibit a strong (-7 power) fall-off as period decreases below 13 s. This strong fall-off is consistent with oceanographic observations of the spectra of surface swell, combined with motional induction theory.

Description

Keywords

Citation

Source

Exploration Geophysics (Aus)

Type

Journal article

Book Title

Entity type

Access Statement

License Rights

DOI

Restricted until