UPnP: An optimal O(n) solution to the absolute pose problem with universal applicability

Date

2014

Authors

Kneip, Laurent
Li, Hongdong
Seo, Yongduek

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Verlag

Abstract

A large number of absolute pose algorithms have been presented in the literature. Common performance criteria are computational complexity, geometric optimality, global optimality, structural degeneracies, and the number of solutions. The ability to handle minimal sets of correspondences, resulting solution multiplicity, and generalized cameras are further desirable properties. This paper presents the first PnP solution that unifies all the above desirable properties within a single algorithm. We compare our result to state-of-the-art minimal, non-minimal, central, and non-central PnP algorithms, and demonstrate universal applicability, competitive noise resilience, and superior computational efficiency. Our algorithm is called Unified PnP (UPnP).

Description

Keywords

Citation

Source

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Type

Conference paper

Book Title

Entity type

Access Statement

License Rights

Restricted until

2037-12-31