Skip navigation
Skip navigation

On convexity of level sets of p-harmonic functions

Zhang, Ting; Zhang, Wei

Description

In this paper, we give sharp estimates of the smallest principal curvature k1 of level sets of n-dimensional p-harmonic functions which extends the result of 2-dimensional minimal surface case due to Longinetti [Longinetti, On minimal surfaces bounded by

dc.contributor.authorZhang, Ting
dc.contributor.authorZhang, Wei
dc.date.accessioned2015-12-13T22:29:19Z
dc.identifier.issn1072-6691
dc.identifier.urihttp://hdl.handle.net/1885/74645
dc.description.abstractIn this paper, we give sharp estimates of the smallest principal curvature k1 of level sets of n-dimensional p-harmonic functions which extends the result of 2-dimensional minimal surface case due to Longinetti [Longinetti, On minimal surfaces bounded by
dc.publisherSouthwest Texas State University
dc.sourceElectronic Journal of Differential Equations
dc.subjectKeywords: Curvature estimates; Maximum principle; P-Harmonic functions; Support function
dc.titleOn convexity of level sets of p-harmonic functions
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume255
dc.date.issued2013
local.identifier.absfor010110 - Partial Differential Equations
local.identifier.ariespublicationf5625xPUB4220
local.type.statusPublished Version
local.contributor.affiliationZhang, Ting, University of Science and Technology of China
local.contributor.affiliationZhang, Wei, College of Physical and Mathematical Sciences, ANU
local.description.embargo2037-12-31
local.bibliographicCitation.issue7
local.bibliographicCitation.startpage2065
local.bibliographicCitation.lastpage2081
local.identifier.doi10.1016/j.jde.2013.06.004
local.identifier.absseo970101 - Expanding Knowledge in the Mathematical Sciences
dc.date.updated2016-02-24T09:22:58Z
local.identifier.scopusID2-s2.0-84880513968
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Zhang_On_convexity_of_level_sets_of_2013.pdf273.69 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  17 November 2022/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator