Skip navigation
Skip navigation

Seismic constraints on the radial dependence of the internal rotation profiles of six Kepler subgiants and young red giants

Deheuvels, S; Dogan, G; Goupil, M. J.; Appourchaux, T; Benomar, O; Bruntt, H; Campante, Tiago L; Casagrande, Luca; Ceillier, T; Davies, G R; De Cat, P

Description

Context. We still do not understand which physical mechanisms are responsible for the transport of angular momentum inside stars. The recent detection of mixed modes that contain the clear signature of rotation in the spectra of Kepler subgiants and red giants gives us the opportunity to make progress on this question. Aims. Our aim is to probe the radial dependence of the rotation profiles for a sample of Kepler targets. For this purpose, subgiants and early red giants are particularly...[Show more]

dc.contributor.authorDeheuvels, S
dc.contributor.authorDogan, G
dc.contributor.authorGoupil, M. J.
dc.contributor.authorAppourchaux, T
dc.contributor.authorBenomar, O
dc.contributor.authorBruntt, H
dc.contributor.authorCampante, Tiago L
dc.contributor.authorCasagrande, Luca
dc.contributor.authorCeillier, T
dc.contributor.authorDavies, G R
dc.contributor.authorDe Cat, P
dc.date.accessioned2015-12-10T23:35:01Z
dc.identifier.issn0004-6361
dc.identifier.urihttp://hdl.handle.net/1885/69675
dc.description.abstractContext. We still do not understand which physical mechanisms are responsible for the transport of angular momentum inside stars. The recent detection of mixed modes that contain the clear signature of rotation in the spectra of Kepler subgiants and red giants gives us the opportunity to make progress on this question. Aims. Our aim is to probe the radial dependence of the rotation profiles for a sample of Kepler targets. For this purpose, subgiants and early red giants are particularly interesting targets because their rotational splittings are more sensitive to the rotation outside the deeper core than is the case for their more evolved counterparts. Methods. We first extracted the rotational splittings and frequencies of the modes for six young Kepler red giants. We then performed a seismic modeling of these stars using the evolutionary codes Cesam2k and astec. By using the observed splittings and the rotational kernels of the optimal models, we inverted the internal rotation profiles of the six stars. Results. We obtain estimates of the core rotation rates for these stars, and upper limits to the rotation in their convective envelope. We show that the rotation contrast between the core and the envelope increases during the subgiant branch. Our results also suggest that the core of subgiants spins up with time, while their envelope spins down. For two of the stars, we show that a discontinuous rotation profile with a deep discontinuity reproduces the observed splittings significantly better than a smooth rotation profile. Interestingly, the depths that are found to be most probable for the discontinuities roughly coincide with the location of the H-burning shell, which separates the layers that contract from those that expand. Conclusions. We characterized the differential rotation pattern of six young giants with a range of metallicities, and with both radiative and convective cores on the main sequence. This will bring observational constraints to the scenarios of angular momentum transport in stars. Moreover, if the existence of sharp gradients in the rotation profiles of young red giants is confirmed, it is expected to help in distinguishing between the physical processes that could transport angular momentum in the subgiant and red giant branches.
dc.publisherSpringer
dc.rightsAuthor/s retain copyright
dc.sourceAstronomy and Astrophysics
dc.titleSeismic constraints on the radial dependence of the internal rotation profiles of six Kepler subgiants and young red giants
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume564
dc.date.issued2014
local.identifier.absfor020104 - Galactic Astronomy
local.identifier.absfor020110 - Stellar Astronomy and Planetary Systems
local.identifier.ariespublicationU3488905xPUB2089
local.type.statusPublished Version
local.contributor.affiliationDeheuvels, S, Universite de Toulouse
local.contributor.affiliationDogan, G, High Altitude Observatory
local.contributor.affiliationGoupil, M. J., Observatoire de Paris
local.contributor.affiliationAppourchaux, T, Universite Paris XI
local.contributor.affiliationBenomar, O, University of Sydney
local.contributor.affiliationBruntt, H, Aarhus University
local.contributor.affiliationCampante, Tiago L, Aahus University
local.contributor.affiliationCasagrande, Luca, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationCeillier, T, CEA/DSM CNRS Universite Paris Diderot
local.contributor.affiliationDavies, G R, Universite Paris Diderot
local.contributor.affiliationDe Cat, P, Royal Observatory of Belgium
local.bibliographicCitation.issueapril
local.bibliographicCitation.startpage1
local.bibliographicCitation.lastpage24
local.identifier.doi10.1051/0004-6361/201322779
dc.date.updated2015-12-10T11:38:00Z
local.identifier.scopusID2-s2.0-84897391933
local.identifier.thomsonID000334671000027
dcterms.accessRightsOpen Access
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Deheuvels_Seismic_constraints_on_the_2014.pdf3.35 MBAdobe PDF


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  17 November 2022/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator