Coadsorption of low molecular weight aromatic and aliphatic alcohols and acids with the cationic surfactant, CTAB, on silica surfaces

Date

2014

Authors

Wangchareansak, Thipvaree
Keniry, Max
Liu, Guangming
Craig, Vincent

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society

Abstract

We have investigated the coadsorption of a range of small molecules with the cationic surfactant CTAB to silica surfaces over a range of concentrations and CTAB to solute ratios and compared the coadsorption with adsorption in the presence of the salicylate ion. We find that molecules with aromatic character and molecules with double bonds are most favorably adsorbed, and we attribute this to cation-π bonding between the surfactant headgroups and the π orbitals of the unsaturated bonds of the solute molecules. The adsorption is complex and depends on chemical interactions between the solute molecules and the surfactant, which are highly specific to the structure of the solute. To improve our understanding of the specifics of these interactions, we have performed one-dimensional rotating frame Overhauser spectroscopy (ROESY) nuclear magnetic resonance experiments. These experiments show the complexity of the intermolecular interactions and can be used to determine the position of the solute molecule with regard to the CTAB molecules in the adsorbed aggregates. The ROESY spectrum for the salicylate anion is distinct from those of the other solute molecules and suggests that the anions are dimerizing. Along with the cation-π bonding between the dimers, this provides a model for the strong influence that salicylate has on adsorption, micellar structure, and viscoelasticity. The ROESY data indicate that the catechol molecule interacts with all parts of the surfactant alkane chains such that they wrap around the molecule, but this has little effect on the interfacial curvature or aggregate shape. More intense isophthalic acid-CTAB intermolecular ROEs compared to those of other aromatic solutes are consistent with an interaction between isophthalic acid and the headgroups of two surfactant molecules that slows the intramicellar motion of isophthalic acid. Differences in interactions between solute molecules and the aliphatic surfactant chains do not result in changes in micelle structure.

Description

Keywords

Citation

Source

Langmuir

Type

Journal article

Book Title

Entity type

Access Statement

License Rights

Restricted until

2037-12-31