Skip navigation
Skip navigation

On Limits of Multi-Antenna Wireless Communications in Spatially Selective Channels

Pollock, Tony Steven

Description

Multiple-Input Multiple-Output (MIMO) communications systems using multiantenna arrays simultaneously during transmission and reception have generated significant interest in recent years. Theoretical work in the mid 1990?s showed the potential for significant capacity increases in wireless channels via spatial multiplexing with sparse antenna arrays and rich scattering environments. However, in reality the capacity is significantly reduced when the antennas are placed close together, or the...[Show more]

dc.contributor.authorPollock, Tony Steven
dc.date.accessioned2009-03-17T05:43:17Z
dc.date.accessioned2011-01-04T02:36:59Z
dc.date.available2009-03-17T05:43:17Z
dc.date.available2011-01-04T02:36:59Z
dc.identifier.otherb22028171
dc.identifier.urihttp://hdl.handle.net/1885/47999
dc.description.abstractMultiple-Input Multiple-Output (MIMO) communications systems using multiantenna arrays simultaneously during transmission and reception have generated significant interest in recent years. Theoretical work in the mid 1990?s showed the potential for significant capacity increases in wireless channels via spatial multiplexing with sparse antenna arrays and rich scattering environments. However, in reality the capacity is significantly reduced when the antennas are placed close together, or the scattering environment is sparse, causing the signals received by different antennas to become correlated, corresponding to a reduction of the effective number of sub-channels between transmit and receive antennas. ¶ By introducing the previously ignored spatial aspects, namely the antenna array geometry and the scattering environment, into a novel channel model new bounds and fundamental limitations to MIMO capacity are derived for spatially constrained, or spatially selective, channels. A theoretically derived capacity saturation point is shown to exist for spatially selective MIMO channels, at which there is no capacity growth with increasing numbers of antennas. Furthermore, it is shown that this saturation point is dependent on the shape, size and orientation of the spatial volumes containing the antenna arrays along with the properties of the scattering environment. ¶ This result leads to the definition of an intrinsic capacity between separate spatial volumes in a continuous scattering environment, which is an upper limit to communication between the volumes that can not be increased with increasing numbers of antennas within. It is shown that there exists a fundamental limit to the information theoretic capacity between two continuous volumes in space, where using antenna arrays is simply one choice of implementation of a more general spatial signal processing underlying all wireless communication systems.
dc.language.isoen
dc.rights.uriThe Australian National University
dc.subjectMIMO systems
dc.subjectwireless
dc.subjectcapacity
dc.subjectspatial correlation
dc.subjectmultipath channels
dc.subjectnon-isotropic scattering
dc.titleOn Limits of Multi-Antenna Wireless Communications in Spatially Selective Channels
dc.typeThesis (PhD)
dcterms.valid2003
local.description.refereedyes
local.type.degreeDoctor of Philosophy (PhD)
dc.date.issued2003
local.contributor.affiliationDepartment of Telecommunications Engineering, Research School of Information Sciences and Engineering
local.contributor.affiliationThe Australian National University
local.identifier.doi10.25911/5d7a2b42995ed
local.mintdoimint
CollectionsOpen Access Theses

Download

File Description SizeFormat Image
01front.pdf223.69 kBAdobe PDFThumbnail
02whole.pdf1.93 MBAdobe PDFThumbnail


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  17 November 2022/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator