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Abstract

Multiple-Input Multiple-Output (MIMO) communications systems using multi-

antenna arrays simultaneously during transmission and reception have generated

significant interest in recent years. Theoretical work in the mid 1990’s showed the

potential for significant capacity increases in wireless channels via spatial multi-

plexing with sparse antenna arrays and rich scattering environments. However,

in reality the capacity is significantly reduced when the antennas are placed close

together, or the scattering environment is sparse, causing the signals received by

different antennas to become correlated, corresponding to a reduction of the effec-

tive number of sub-channels between transmit and receive antennas.

By introducing the previously ignored spatial aspects, namely the antenna ar-

ray geometry and the scattering environment, into a novel channel model new

bounds and fundamental limitations to MIMO capacity are derived for spatially

constrained, or spatially selective, channels. A theoretically derived capacity sat-

uration point is shown to exist for spatially selective MIMO channels, at which

there is no capacity growth with increasing numbers of antennas. Furthermore, it

is shown that this saturation point is dependent on the shape, size and orientation

of the spatial volumes containing the antenna arrays along with the properties of

the scattering environment.

This result leads to the definition of an intrinsic capacity between separate

spatial volumes in a continuous scattering environment, which is an upper limit

to communication between the volumes that can not be increased with increasing

numbers of antennas within. It is shown that there exists a fundamental limit to

the information theoretic capacity between two continuous volumes in space, where

using antenna arrays is simply one choice of implementation of a more general

spatial signal processing underlying all wireless communication systems.
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Notation and Symbols

AWGN additive white Gaussian noise

BER bit error rate

CDF cumulative distribution function

CSI channel state information

UCA uniform circular array

UGA uniform grid array

ULA uniform linear array

MISO multiple-input single-ouput

MIMO multiple-input multiple-output

SISO single-input single-output

SIMO single-input multiple-output

SNR signal-to-noise ratio

SDOF spacial degrees of freedom

d·e ceiling operator

b·c floor operator

f(·) complex conjugate of scalar or function f

A† complex conjugate transpose of matrix or vector A

|A| determinant of matrix A

‖a‖ euclidian norm of vector a

EX {·} Expectation operator over random process X

δ(i− j) Kronecker delta

〈·, ·〉 inner product

a′ transpose of matrix or vector a

η signal-to-noise ratio (SNR)

S1 1 sphere (unit circle)

S2 2 sphere (unit sphere)

In n× n identity matrix

1n n× n matrix of ones
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